精英家教网 > 高中数学 > 题目详情

 已知椭圆C:+=1(a>b>0)的离心率为,椭圆C上任意一点到椭圆C两个焦点的距离之和为6.

(1)求椭圆C的方程;

(2)设直线lykx-2与椭圆C交于AB两点,点P(0,1),且|PA|=|PB|,求直线l的方程.

 

 

 

 

 

 

 

【答案】

 解: (1)由已知2a=6,e==,

解得a=3,c=,所以b2a2c2=3,

所以椭圆C的方程为+=1.…………………3分

(2)由得,(1+3k2)xkx+3=0,

因为直线l与椭圆C有两个不同的交点,

所以Δ=144k (1+3k2)>0,解得k2>.

A(x1y1),B(x2y2),AB的中点为E

x1x2=,x1x2=,

y1y2k(x1x2)-4=k·-4=-,

所以AB的中点坐标为E

因为|PA|=|PB|,所以PEABkPE·kAB=-1,

所以·k=-1,

解得k=1或k=-1,经检验,符合题意.

所以直线l的方程为xy-2=0或xy+2=0.…………………………………9分

 

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年泉州一中适应性练习文)(12分)已知椭圆C=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆CA,B两点,N为弦AB的中点。

(1)求直线ONO为坐标原点)的斜率KON

(2)对于椭圆C上任意一点M ,试证:总存在角∈R)使等式:cossin成立。

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(09年湖北重点中学4月月考理)(13分

已知椭圆C=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆CA,B两点,N为弦AB

(1)求直线ONO为坐标原点)的斜率KON

1)           (2)对于椭圆C上任意一点M ,试证:总存在角∈R)使等式:cossin成立

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆CAB两点,N为弦AB的中点。

(1)求直线ONO为坐标原点)的斜率KON

(2)对于椭圆C上任意一点M ,试证:总存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆CAB两点,N为弦AB的中点。

(1)求直线ONO为坐标原点)的斜率KON

(2)对于椭圆C上任意一点M ,试证:总存在角∈R)使等式:cossin成立。

查看答案和解析>>

科目:高中数学 来源:2014届湖北省武汉市高三9月调研测试理科数学试卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.

 

查看答案和解析>>

同步练习册答案