已知数列
的前
项和
与
满足
.
(1)求数列
的通项公式;(2)求数列
的前
项和
.
科目:高中数学 来源: 题型:解答题
已知数列{an}中,a1=1,an+1=
(n∈N*).
(1)求证: 数列 {
+
}是等比数列,并求数列{an}的通项an
(2)若数列{bn}满足bn=(3n-1)
an,数列{bn}的前n项和为Tn,若不等式(-1)nλ<Tn对一切n∈N*恒成立,求λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择。调查表明,凡是在这星期一选A菜的,下星期一会有
改选B菜;而选B菜的,下星期一会有
改选A菜。用
分别表示第
个星期选A的人数和选B的人数.
⑴试用
表示
,判断数列
是否成等比数列并说明理由;
⑵若第一个星期一选A神菜的有200人,那么第10个星期一选A种菜的大约有多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设C1、C2、…、Cn、…是坐标平面上的一列圆,它们的圆心都在轴的正半轴上,且都与直线y=
x相切,对每一个正整数n,圆Cn都与圆Cn+1相互外切,以rn表示Cn的半径,已知{rn}为递增数列.![]()
(1)证明:{rn}为等比数列;
(2)设r1=1,求数列
的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知各项均为正数的数列
满足
, 且
,其中
.
(1) 求数列
的通项公式;
(2) 设数列
满足
,是否存在正整数
,使得
成等比数列?若存在,求出所有的
的值;若不存在,请说明理由。
(3) 令
,记数列
的前
项和为
,其中
,证明:
。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com