【题目】已知椭圆
:
的左、右焦点分别为
,
,且离心率为
,
为椭圆上任意一点,当
时,
的面积为1.
(1)求椭圆
的方程;
(2)已知点
是椭圆
上异于椭圆顶点的一点,延长直线
,
分别与椭圆交于点
,
,设直线
的斜率为
,直线
的斜率为
,求证:
为定值.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)设
由题
,由此求出
,可得椭圆
的方程;
(2)设
,
,
当直线
的斜率不存在时,可得
;
当直线
的斜率不存在时,同理可得
.
当直线
、
的斜率存在时,
,
设直线
的方程为
,则由
消去
通过运算可得
,同理可得
,由此得到直线
的斜率为
,
直线
的斜率为
,进而可得
.
试题解析:(1)设
由题
,
解得
,则
,
椭圆
的方程为
.
(2)设
,
,
当直线
的斜率不存在时,设
,则
,
直线
的方程为
代入
,可得
,
,
,则
,
直线
的斜率为
,直线
的斜率为
,
,
当直线
的斜率不存在时,同理可得
.
当直线
、
的斜率存在时,
,
设直线
的方程为
,则由
消去
可得:
,
又
,则
,代入上述方程可得
,
,则![]()
,
设直线
的方程为
,同理可得
,
直线
的斜率为
,
直线
的斜率为
,
.
所以,直线
与
的斜率之积为定值
,即
.
【题型】解答题
【结束】
21
【题目】已知函数
,
,在
处的切线方程为
.
(1)求
,
;
(2)若方程
有两个实数根
,
,且
,证明:
.
【答案】(1)
,
;(2)见解析
【解析】试题分析:
在
处的切线方程为
,求导算出切线方程即可求出结果
构造
,求导,得
在区间
上单调递减,在区间
上单调递增,设
的根为
,证得
,讨论证得
的根为
,
,从而得证结论
解析:(1)由题意
,所以
,
又
,所以
,
若
,则
,与
矛盾,故
,
.
(2)由(Ⅰ)可知
,
,
设
在(-1,0)处的切线方程为
,
易得,
,令![]()
即
,
,
当
时, ![]()
当
时,
设
,
,
故函数
在
上单调递增,又
,
所以当
时,
,当
时,
,
所以函数
在区间
上单调递减,在区间
上单调递增,
故
,
,
设
的根为
,则
,
又函数
单调递减,故
,故
,
设
在(0,0)处的切线方程为
,易得
,
令
,
,
当
时,
,
当
时,
![]()
故函数
在
上单调递增,又
,
所以当
时,
,当
时,
,
所以函数
在区间
上单调递减,在区间
上单调递增,
,
,
设
的根为
,则
,
又函数
单调递增,故
,故
,
又
,
.
科目:高中数学 来源: 题型:
【题目】设f(n)是定义在N*上的增函数,f(4)=5,且满足:
①任意n∈N*,f(n)
Z;②任意m,n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).
(1)求f(1),f(2),f(3)的值;
(2)求f(n)的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(Ⅰ)设命题
实数
满足
,其中
,命题
实数
满足
.若
是
的充分不必要条件,求实数
的取值范围.
(Ⅱ)已知命题
方程
表示焦点在x轴上双曲线;命题
空间向量
,
的夹角为锐角,如果命题“
”为真,命题“
”为假.求
的取值范围;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是公差不为零的等差数列,满足
,且
、
、
成等比数列.
(1)求数列
的通项公式;
(2)设数列
满足
,求数列
的前
项和
.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)设等差数列
的公差为
,由a3=7,且
、
、
成等比数列.可得
,解之得即可得出数列
的通项公式;
2)由(1)得
,则
,由裂项相消法可求数列
的前
项和
.
试题解析:(1)设数列
的公差为
,且
由题意得
,
即
,解得
,
所以数列
的通项公式
.
(2)由(1)得![]()
,
![]()
.
【题型】解答题
【结束】
18
【题目】四棱锥
的底面
为直角梯形,
,
,
,
为正三角形.
![]()
(1)点
为棱
上一点,若
平面
,
,求实数
的值;
(2)求点B到平面SAD的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,若直线
与曲线
相切;
(1)求曲线
的极坐标方程;
(2)在曲线
上取两点
,
与原点
构成
,且满足
,求面积
的最大值.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线
的直角坐标方程为
,
,消去参数
可知曲线
是圆心为
,半径为
的圆,由直线
与曲线
相切,可得:
;则曲线C的方程为
, 再次利用极坐标与直角坐标的互化公式可得
可得曲线C的极坐标方程.
(2)由(1)不妨设M(
),
,(
),
,
,
由此可求
面积的最大值.
试题解析:(1)由题意可知直线
的直角坐标方程为
,
曲线
是圆心为
,半径为
的圆,直线
与曲线
相切,可得:
;可知曲线C的方程为
,
所以曲线C的极坐标方程为
,
即
.
(2)由(1)不妨设M(
),
,(
),
,
![]()
,
当
时,
,
所以△MON面积的最大值为
.
【题型】解答题
【结束】
23
【题目】已知函数
的定义域为
;
(1)求实数
的取值范围;
(2)设实数
为
的最大值,若实数
,
,
满足
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】上饶某购物中心在开业之后,为了解消费者购物金额的分布,在当月的电脑消费小票中随机抽取
张进行统计,将结果分成5组,分别是
,制成如图所示的频率分布直方图(假设消费金额均在
元的区间内).
![]()
(1)若在消费金额为
元区间内按分层抽样抽取6张电脑小票,再从中任选2张,求这2张小票均来自
元区间的概率;
(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案:
方案一:全场商品打8.5折;
方案二:全场购物满200元减20元,满400元减50元,满600元减80元,满800元减120元,以上减免只取最高优惠,不重复减免.利用直方图的信息分析哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)设
为椭圆
上任一点,
为其右焦点,点
满足
.
①证明:
为定值;
②设直线
与椭圆
有两个不同的交点
,与
轴交于点
.若
成等差数列,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com