精英家教网 > 高中数学 > 题目详情
已知点P在抛物线x2=4y上运动,F为抛物线的焦点,点A的坐标为(2,3),求PA+PF的最小值______.
抛物线标准方程 x2=4y,p=2,焦点F(0,1),准线方程为y=-1.
设p到准线的距离为PM,(即PM垂直于准线,M为垂足),
则|PA|+|PF|=|PA|+|PM|≥|AM|=4,(当且仅当P、A、M共线时取等号),
故答案为4.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P在抛物线x2=4y上运动,F为抛物线的焦点,点A的坐标为(2,3),求PA+PF的最小值
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线x2=2y上的一动点,焦点为F,若定点M(1,2),则当P点在抛物线上移动时,|PM|+|PF|的最小值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在抛物线x2=4y上,且点P到x轴的距离与点P到此抛物线的焦点的距离之比为1:3,则点P到x轴的距离是(  )
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省徐州市睢宁县菁华高级中学高二(上)12月月考数学试卷(文科)(解析版) 题型:填空题

已知点P在抛物线x2=4y上运动,F为抛物线的焦点,点A的坐标为(2,3),求PA+PF的最小值   

查看答案和解析>>

同步练习册答案