精英家教网 > 高中数学 > 题目详情
已知点P在抛物线x2=4y上运动,F为抛物线的焦点,点A的坐标为(2,3),求PA+PF的最小值   
【答案】分析:根据抛物线的标准方程 求出焦点坐标和准线方程,利用抛物线的定义可得|PA|+|PF|=|PA|+|PM|≥|AM|,故|AM|(A到准线的距离)为所求.
解答:解:抛物线标准方程 x2=4y,p=2,焦点F(0,1),准线方程为y=-1.
设p到准线的距离为PM,(即PM垂直于准线,M为垂足),
则|PA|+|PF|=|PA|+|PM|≥|AM|=4,(当且仅当P、A、M共线时取等号),
故答案为4.
点评:本题考查抛物线的定义、标准方程,以及简单性质的应用,得到|PA|+|PF|=|PA|+|PM|≥|AM|,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P在抛物线x2=4y上运动,F为抛物线的焦点,点A的坐标为(2,3),求PA+PF的最小值
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是抛物线x2=2y上的一动点,焦点为F,若定点M(1,2),则当P点在抛物线上移动时,|PM|+|PF|的最小值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P在抛物线x2=4y上,且点P到x轴的距离与点P到此抛物线的焦点的距离之比为1:3,则点P到x轴的距离是(  )
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P在抛物线x2=4y上运动,F为抛物线的焦点,点A的坐标为(2,3),求PA+PF的最小值______.

查看答案和解析>>

同步练习册答案