精英家教网 > 高中数学 > 题目详情

(本题满分14分)

已知数列满足

(Ⅰ)证明:数列为等比数列;

(Ⅱ)求数列的通项以及前n项和

(Ⅲ)如果对任意的正整数都有的取值范围。

 

【答案】

(Ⅰ)见解析(Ⅱ)(Ⅲ)

【解析】

试题分析:(Ⅰ)证明:由

 

所以数列为等比数列且首项为2,公比为2.                                     …4分

(Ⅱ)由(Ⅰ)得= 所以

 利用分组求和可得:                                 …9分

(Ⅲ)由,得  (10分)

则 

,当

综合,得:当时,),即时,,

所以为单调递增数列,故,即所求的取值范围是 .            …14分

考点:本小题主要考查等比数列的证明、构造新数列、用函数的观点考查数列的单调性、恒成立问题求参数的值以及数列中的基本计算问题,考查学生分析问题、解决问题的能力和转化思想的应用.

点评:要证明等差或等比数列,只能用定义或等差、等比数列的中项,恒成立问题一般转化为求最值问题解决,而数列是一种特殊的函数,可以用函数的观点考查数列的单调性进而求最值.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分14分
A.选修4-4:极坐标与参数方程在极坐标系中,直线l 的极坐标方程为θ=
π
3
(ρ∈R ),以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,曲线C的参数方程为
x=2cosα
y=1+cos2α
(α 参数).求直线l 和曲线C的交点P的直角坐标.
B.选修4-5:不等式选讲
设实数x,y,z 满足x+y+2z=6,求x2+y2+z2 的最小值,并求此时x,y,z 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABEAEEBBC=2,上的点,且BF⊥平面ACE

(1)求证:AEBE;(2)求三棱锥DAEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题

(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求实数m的值

(Ⅱ)若ACRB,求实数m的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题

(本题满分14分)

已知点是⊙上的任意一点,过垂直轴于,动点满足

(1)求动点的轨迹方程; 

(2)已知点,在动点的轨迹上是否存在两个不重合的两点,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题

(本题满分14分)已知函数.

(1)求函数的定义域;

(2)判断的奇偶性;

(3)方程是否有根?如果有根,请求出一个长度为的区间,使

;如果没有,请说明理由?(注:区间的长度为).

 

查看答案和解析>>

同步练习册答案