(本题满分14分)
已知数列
满足![]()
(Ⅰ)证明:数列
为等比数列;
(Ⅱ)求数列
的通项
以及前n项和
;
(Ⅲ)如果对任意的正整数
都有
求
的取值范围。
(Ⅰ)见解析(Ⅱ)
,
(Ⅲ)![]()
【解析】
试题分析:(Ⅰ)证明:由
得
所以数列
为等比数列且首项为2,公比为2.
…4分
(Ⅱ)由(Ⅰ)得
=
所以![]()
利用分组求和可得:
…9分
(Ⅲ)由
,得
(10分)
令![]()
则 ![]()
当
时
,当
时![]()
综合,得:当
时,
)
,即
时,
,
所以
为单调递增数列,故
,即所求
的取值范围是
.
…14分
考点:本小题主要考查等比数列的证明、构造新数列、用函数的观点考查数列的单调性、恒成立问题求参数的值以及数列中的基本计算问题,考查学生分析问题、解决问题的能力和转化思想的应用.
点评:要证明等差或等比数列,只能用定义或等差、等比数列的中项,恒成立问题一般转化为求最值问题解决,而数列是一种特殊的函数,可以用函数的观点考查数列的单调性进而求最值.
科目:高中数学 来源: 题型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,
为
上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求实数m的值
(Ⅱ)若A
CRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点
是⊙
:
上的任意一点,过
作
垂直
轴于
,动点
满足
。
(1)求动点
的轨迹方程;
(2)已知点
,在动点
的轨迹上是否存在两个不重合的两点
、
,使
(O是坐标原点),若存在,求出直线
的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数
.
(1)求函数
的定义域;
(2)判断
的奇偶性;
(3)方程
是否有根?如果有根
,请求出一个长度为
的区间
,使![]()
![]()
;如果没有,请说明理由?(注:区间的长度为
).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com