精英家教网 > 高中数学 > 题目详情
已知a、b、c是平面α内相交于一点O的三条直线,而直线l和平面α相交,并且和a、b、c三条直线成等角.求证:l⊥α.

证明:分别在a、b、c上取点A、B、C并使AO=BO=CO.设l经过O,在l上取一点P,在△POA、△POB、△POC中,

∵PO=PO=PO,AO=BO=CO,∠POA=∠POB=∠POC,

∴△POA≌△POB≌△POC.

∴PA=PB=PC.取AB的中点D,

连接OD、PD,则OD⊥AB,PD⊥AB.

∵PD∩OD=D,∴AB⊥平面POD.

∵PO平面POD,∴PO⊥AB.

同理,可证PO⊥BC.

∵ABα,BCα,AB∩BC=B,∴PO⊥α,即l⊥α.

若l不经过点O时,可经过点O作l′∥l.用上述方法证明l′⊥α,

∴l⊥α.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B、C是平面内不共线的三点,P为平面内的动点,且
OP
=
OB
+
OC
2
+λ(
AB
|
AB
|cosB
+
AC
|
AC
|cosC
)  (λ>0)
,则P的轨迹过△ABC的(  )
A、重心B、垂心C、内心D、外心

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C是平面上不共线的三点,O是三角形ABC的重心,动点P满足
OP
=
1
3
(
1
2
OA
+
1
2
OB
+2
OC
)
,则点P一定为三角形ABC的(  )
A、AB边中线的中点
B、AB边中线的三等分点(非重心)
C、重心
D、AB边的中点

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是平面上不共线上三点,O为△ABC外心,动点P满足:
OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
]
(λ∈R且λ≠0),则P的轨迹一定通过△ABC的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是平面上不共线的三点,o为平面ABC内任一点,动点P满足等式
OP
=
1
3
[(1-λ)
OA
+(1-λ)
OB
+(1+2λ)
OC
](λ∈R
且λ≠1,则P的轨迹一定通过△ABC的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是平面内互异的三点,O为平面上任意一点,
OC
=x
OA
+y
OB
,求证:
(1)若A,B,C三点共线,则x+y=1;
(2)若x+y=1,则A,B,C三点共线.

查看答案和解析>>

同步练习册答案