【题目】已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度
(单位:
),对某种鸡的时段产蛋量
(单位:
) 和时段投入成本
(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度
和产蛋量
的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.
![]()
![]()
其中
.
(1)根据散点图判断,
与
哪一个更适宜作为该种鸡的时段产蛋量
关于鸡舍时段控制温度
的回归方程类型?(给判断即可,不必说明理由)
(2)若用
作为回归方程模型,根据表中数据,建立
关于
的回归方程;
(3)已知时段投入成本
与
的关系为
,当时段控制温度为
时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?
附:①对于一组具有线性相关关系的数据
,其回归直线
的斜率和截距的最小二乘估计分别为
,
.
![]()
科目:高中数学 来源: 题型:
【题目】在直三棱柱
中,底面为等腰直角三角形,
,
, 若
、
、
别是棱
、
、
的中点,则下列四个命题:
;
②三棱锥
的外接球的表面积为
;
③三棱锥
的体积为
;
④直线
与平面
所成角为![]()
其中正确的命题有__________.(把所有正确命题的序号填在答题卡上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥
的底面
是直角梯形,
,
,
,点
在线段
上,且
,
,
平面
.
![]()
(1)求证:平面
平面
;
(2)当四棱锥
的体积最大时,求平面
与平面
所成二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是抛物线
的对称轴与准线的交点,点
为抛物线的焦点,
在抛物线上且满足
,当
取最大值时,点
恰好在以
,
为焦点的双曲线上,则双曲线的离心率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知梯形
如图(1)所示,其中
,
,四边形
是边长为
的正方形,现沿
进行折叠,使得平面
平面
,得到如图(2)所示的几何体.
![]()
(Ⅰ)求证:平面
平面
;
(Ⅱ)已知点
在线段
上,且
平面
,求
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
的焦点为
,圆
:
,过
作垂直于
轴的直线交抛物线
于
、
两点,且
的面积为
.
(1)求抛物线
的方程和圆
的方程;
(2)若直线
、
均过坐标原点
,且互相垂直,
交抛物线
于
,交圆
于
,
交抛物线
于
,交圆
于
,求
与
的面积比的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com