【题目】已知数列
的前
项和为
,且点![]()
在函数
的图像上;
(1)求数列
的通项公式;
(2)设数列
满足:
,
,求
的通项公式;
(3)在第(2)问的条件下,若对于任意的
,不等式
恒成立,求实数
的取值范围;
【答案】(1)
(2)当n为偶数时,
;当n为奇数时,
.(3)![]()
【解析】
(1)根据
,讨论
与
两种情况,即可求得数列
的通项公式;
(2)由(1)利用递推公式及累加法,即可求得当n为奇数或偶数时
的通项公式.也可利用数学归纳法,先猜想出通项公式,再用数学归纳法证明.
(3)分类讨论,当n为奇数或偶数时,分别求得
的最大值,即可求得
的取值范围.
(1)由题意可知,
.
当
时,![]()
![]()
,
当
时,![]()
也满足上式.
所以
.
(2)解法一:由(1)可知![]()
,
即![]()
.
当
时,
,①
当
时,
,所以
,②
当
时,
,③
当
时,
,所以
,④
……
当
时,n为偶数![]()
当
时,n为偶数所以![]()
以上
个式子相加,得
![]()
![]()
.
又
,所以当n为偶数时,
.
同理,当n为奇数时,
![]()
![]()
,
所以,当n为奇数时,
.
解法二:
猜测:当n为奇数时,
![]()
![]()
.
猜测:当n为偶数时,
![]()
![]()
.
以下用数学归纳法证明:
,命题成立;
假设当
时,命题成立;
当n为奇数时,
,
当
时,n为偶数,由![]()
得
![]()
故,
时,命题也成立.
综上可知, 当n为奇数时![]()
同理,当n为偶数时,命题仍成立.
(3)由(2)可知
.
①当n为偶数时,![]()
![]()
,
所以
随n的增大而减小从而当n为偶数时,
的最大值是
.
②当n为奇数时,![]()
![]()
,
所以
随n的增大而增大,且
.
综上,
的最大值是1.
因此,若对于任意的
,不等式
恒成立,只需
,
故实数
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】某中学调查了某班全部
名同学参加学校社团的情况,数据如下表:(单位:人)
参加书法社 | 未参加书法社 | |
参加辩论社 |
|
|
未参加辩论社 |
|
|
(1)从该班随机选
名同学,求该同学至少参加一个社团的概率;
(2)在既参加书法社又参加辩论社的
名同学中,有
名男同学
,
名女同学
.现从这
名同学中男女姓各随机选
人(每人被选到的可能性相同).
(i)列举出所有可能结果;
(ii)设
为事件“
被选中且
未被选中”,求事件
发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):
A班 | 6 6.5 7 7.5 8 |
B班 | 6 7 8 9 10 11 12 |
C班 | 3 4.5 6 7.5 9 10.5 12 13.5 |
(Ⅰ)试估计C班的学生人数;
(Ⅱ)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;
(Ⅲ)再从A,B,C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为
,表格中数据的平均数记为
,试判断
和
的大小.(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的右焦点为
,点
分别是椭圆
的上、下顶点,点
是直线
上的一个动点(与
轴交点除外),直线
交椭圆于另一点
.
![]()
(1)当直线
过椭圆的右焦点
时,求
的面积;
(2)记直线
的斜率分别为
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300名学生每周平均体育运动时间的样本数据(单位:小时).
![]()
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:
,
,
,
,
,
,估计该校学生每周平均体育运动时间超过4小时的概率;
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有
的把握认为“该校学生的毎周平均体育运动时间与性别有关”.
男生 | 女生 | 总计 | |
每周平均体育运动时间不超过4小时 | |||
每周平均体育运动时间超过4小时 | |||
总计 |
附:
,其中
.
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.
维修次数 | 2 | 3 | 4 | 5 | 6 |
甲设备 | 5 | 10 | 30 | 5 | 0 |
乙设备 | 0 | 5 | 15 | 15 | 15 |
(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为
和
,求
和
的分布列;
(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com