【题目】已知圆
关于直线
对称,圆心C在第二象限,半径为
.
(1)求圆C的方程.
(2)是否存在直线l与圆C相切,且在x轴、y轴上的截距相等?若存在,写出满足条件的直线条数(不要求过程);若不存在,说明理由.
【答案】(1)
;(2)存在,4条.
【解析】
(1)圆关于直线对称,则圆心在直线上,设圆的标准方程,即可求解;
(2)分直线过原点和不过原点两类情况,讨论直线和圆相切分别求解.
(1)圆
关于直线
对称,则圆心在直线上,
设圆心
,在第二象限,则
,即
,
圆的标准方程为:![]()
化为一般方程:
,
则
,解得:
,或
(舍去),
所以圆C的方程:
;
(2)由题直线l与圆C相切,直线在x轴、y轴上的截距相等,
当直线过原点时,斜率必存在,设斜率为
,直线方程
与圆相切,
则圆心到直线距离等于半径,即
,
,
,
有两个不等实根,即有两条过原点的直线与圆相切;
当直线不过原点时,设直线方程
,
与圆相切,
,得
,解得
或
,两条直线,
所以一共4条直线.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的两个焦点分别为
,离心率为
,过
的直线
与椭圆
交于
两点,且
的周长为![]()
(1)求椭圆
的方程;
(2)若直线
与椭圆
分别交于
两点,且
,试问点
到直线
的距离是否为定值,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
.
(1)若直线
经过抛物线
的焦点,求抛物线
的准线方程;
(2)若斜率为-1的直线经过抛物线
的焦点
,且与抛物线
交于
,
两点,当
时,求抛物线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即
.已知
满足
.且
,则用以上给出的公式可求得
的面积为____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以原点为极点,以
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,
(Ⅰ)求曲线
的普通方程和曲线
的直角坐标方程;
(Ⅱ)设点
,曲线
与曲线
交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
是双曲线
上一点,
分别是双曲线
的左、右顶点,直线
的斜率之积为
.
(1)求双曲线的离心率;
(2)过双曲线
的右焦点且斜率为
的直线交双曲线于
两点,
为坐标原点,
为双曲线上一点,满足
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com