已知椭圆
:![]()
的离心率为
,过右焦点
且斜率为
的直线交椭圆
于
两点,
为弦
的中点,
为坐标原点.
(1)求直线
的斜率
;
(2)求证:对于椭圆
上的任意一点
,都存在
,使得
成立.
(1) ![]()
(2) 显然
与
可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量
,有且只有一对实数
,使得等式
成立.,那么设出点M的坐标,结合向量的坐标关系来证明。
解析试题分析:解:(1)设椭圆的焦距为
,因为
,所以有
,故有
.
从而椭圆
的方程可化为:
① 知右焦点
的坐标为(
),据题意有
所在的直线方程为:
. ②由①,②有:
.
③设
,弦
的中点
,由③及韦达定理有:
所以
,即为所求. 5分
(2)显然
与
可作为平面向量的一组基底,由平面向量基本定理,对于这一平面内的向量
,有且只有一对实数
,使得等式
成立.设
,由(1)中各点的坐标有:
,故
. 7分
又因为点
在椭圆
上,所以有
整理可得:
. ④
由③有:
.所以
⑤又点
在椭圆
上,故有
.
⑥将⑤,⑥代入④可得:
. 11分
所以,对于椭圆上的每一个点
,总存在一对实数,使等式
成立,且
.
所以存在
,使得
.也就是:对于椭圆
上任意一点
,总存在
,使得等式
成立. 13分
考点:椭圆的方程和性质,以及向量的加减法
点评:解决的关键是根据椭圆的性质以及直线与椭圆的位置关系的运用,属于中档题。
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,以坐标原点O为极点x轴的正半轴为极轴建立极坐标系, 曲线C1的极坐标方程为:![]()
(1)求曲线C1的普通方程
(2)曲线C2的方程为
,设P、Q分别为曲线C1与曲线C2上的任意一点,求|PQ|的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在坐标原点,焦点在
轴上,且过点
.![]()
(Ⅰ)求抛物线的标准方程;
(Ⅱ)与圆
相切的直线
交抛物线于不同的两点
若抛物线上一点
满足![]()
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知中心在原点
,焦点在x轴上,离心率为
的椭圆过点(
,
).![]()
(1)求椭圆的方程;
(2)设不过原点
的直线与该椭圆交于
、
两点,满足直线
,
,
的斜率依次成等比数列,求
面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直接坐标系xOy中,直线L的方程为x-y+4=0,曲线C的参数方程为
.
(1)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
),判断点P与直线L的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直角坐标系
中,一直角三角形
,
,B、D在
轴上且关于原点
对称,
在边
上,BD=3DC,△ABC的周长为12.若一双曲线
以B、C为焦点,且经过A、D两点.![]()
⑴ 求双曲线
的方程;
⑵ 若一过点
(
为非零常数)的直线
与双曲线
相交于不同于双曲线顶点的两点
、
,且
,问在
轴上是否存在定点
,使
?若存在,求出所有这样定点
的坐标;若不存在,请说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com