【题目】狄利克雷是19世纪德国著名的数学家,他定义了一个“奇怪的函数”
,下列关于狄利克雷函数的叙述正确的有:______.
①
的定义域为
,值域是
②
具有奇偶性,且是偶函数
③
是周期函数,但它没有最小正周期 ④对任意的
,![]()
科目:高中数学 来源: 题型:
【题目】下图是某地区2009年至2018年芯片产业投资额
(单位:亿元)的散点图,为了预测该地区2019年的芯片产业投资额,建立了
与时间变量
的四个线性回归模型.根据2009年至2018年的数据建立模型①;根据2010年至2017年的数据建立模型②;根据2011年至2016年的数据建立模型③;根据2014年至2018年的数据建立模型④.则预测值更可靠的模型是( )
![]()
A.①B.②C.③D.④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),等腰梯形
,
,
,
,
,
分别是
的两个三等分点,若把等腰梯形沿虚线
、
折起,使得点
和点
重合,记为点
, 如图(2).
![]()
(1)求证:平面
平面
;
(2)求平面
与平面
所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点O为坐标原点,椭圆C:
(a>b>0)的左、右焦点分别为F1,F2,离心率为
,点I,J分别是椭圆C的右顶点、上顶点,△IOJ的边IJ上的中线长为
.
(1)求椭圆C的标准方程;
(2)过点H(-2,0)的直线交椭圆C于A,B两点,若AF1⊥BF1,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形
中,
,
,
,
,
,点
在
上,且
,将
沿
折起,使得平面
平面
(如图),
为
中点.
![]()
(1)求证:
平面
;
(2)求直线
与平面
所成的角的正弦值.
(3)在线段
上是否存在点
,使得
平面
?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体ABCD-A1B1C1D1中,点M、N分别在AB1、BC1上,且AM=
AB1,BN=
BC1,则下列结论:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,
正确命题的个数是( )
![]()
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某连锁分店销售某种商品,该商品每件的进价为
元,预计当每件商品售价为
元时,一年的销售量(单位:万件)
该分店全年需向总店缴纳宣传费、保管费共计
万元.
(1)求该连锁分店一年的利润与每件商品售价
的函数关系式
;
(2)求当每件商品售价为多少元时,该连锁店一年的利润最大,并求其最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从抛物线
上任意一点P向x轴作垂线段,垂足为Q,点M是线段
上的一点,且满足![]()
(1)求点M的轨迹C的方程;
(2)设直线
与轨迹c交于
两点,T为C上异于
的任意一点,直线
,
分别与直线
交于
两点,以
为直径的圆是否过x轴上的定点?若过定点,求出符合条件的定点坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
与椭圆
相交于点M(0,1),N(0,-1),且椭圆的离心率为
.
![]()
(1)求
的值和椭圆C的方程;
(2)过点M的直线
交圆O和椭圆C分别于A,B两点.
①若
,求直线
的方程;
②设直线NA的斜率为
,直线NB的斜率为
,问:
是否为定值? 如果是,求出定值;如果不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com