精英家教网 > 高中数学 > 题目详情

(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)

如题(19)图,在四面体中,平面平面

   (Ⅰ)若,求四面体的体积;

   (Ⅱ)若二面角,求异面直线所成角的余弦值.

(本题12分)

   (I)解:如答(19)图1,设F为AC的中点,由于AD=CD,所以DF⊥AC.

故由平面ABC⊥平面ACD,知DF⊥平面ABC,

即DF是四面体ABCD的面ABC上的高,

且DF=ADsin30°=1,AF=ADcos30°=.

在Rt△ABC中,因AC=2AF=,AB=2BC,

由勾股定理易知

故四面体ABCD的体积

   (II)解法一:如答(19)图1,设G,H分别为边CD,BD的中点,则FG//AD,GH//BC,从而∠FGH是异面直线AD与BC所成的角或其补角.

    设E为边AB的中点,则EF//BC,由AB⊥BC,知EF⊥AB.又由(I)有DF⊥平面ABC,

    故由三垂线定理知DE⊥AB.

所以∠DEF为二面角C—AB—D的平面角,由题设知∠DEF=60°

从而

因Rt△ADE≌Rt△BDE,故BD=AD=a,从而,在Rt△BDF中,

从而在△FGH中,因FG=FH,由余弦定理得

因此,异面直线AD与BC所成角的余弦值为

解法二:如答(19)图2,过F作FM⊥AC,交AB于M,已知AD=CD,

平面ABC⊥平面ACD,易知FC,FD,FM两两垂直,以F为原点,射线FM,FC,FD分别为x轴,y轴,z轴的正半轴,建立空间直角坐标系F—xyz.

不妨设AD=2,由CD=AD,∠CAD=30°,易知点A,C,D的坐标分别为

显然向量是平面ABC的法向量.

已知二面角C—AB—D为60°,

故可取平面ABD的单位法向量

使得

设点B的坐标为,有

易知与坐标系的建立方式不合,舍去.

因此点B的坐标为所以

从而

故异面直线AD与BC所成的角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案