(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)
如题(19)图,在四面体
中,平面
平面
,
,
,
.
(Ⅰ)若
,
,求四面体
的体积;
(Ⅱ)若二面角
为
,求异面直线
与
所成角的余弦值.
![]()
(本题12分)
(I)解:如答(19)图1,设F为AC的中点,由于AD=CD,所以DF⊥AC.
故由平面ABC⊥平面ACD,知DF⊥平面ABC,
即DF是四面体ABCD的面ABC上的高,
且DF=ADsin30°=1,AF=ADcos30°=
.
在Rt△ABC中,因AC=2AF=
,AB=2BC,
由勾股定理易知![]()
故四面体ABCD的体积
![]()
(II)解法一:如答(19)图1,设G,H分别为边CD,BD的中点,则FG//AD,GH//BC,从而∠FGH是异面直线AD与BC所成的角或其补角.
设E为边AB的中点,则EF//BC,由AB⊥BC,知EF⊥AB.又由(I)有DF⊥平面ABC,
故由三垂线定理知DE⊥AB.
所以∠DEF为二面角C—AB—D的平面角,由题设知∠DEF=60°
设![]()
在![]()
从而![]()
因Rt△ADE≌Rt△BDE,故BD=AD=a,从而,在Rt△BDF中,
,
又
从而在△FGH中,因FG=FH,由余弦定理得
![]()
因此,异面直线AD与BC所成角的余弦值为![]()
解法二:如答(19)图2,过F作FM⊥AC,交AB于M,已知AD=CD,
平面ABC⊥平面ACD,易知FC,FD,FM两两垂直,以F为原点,射线FM,FC,FD分别为x轴,y轴,z轴的正半轴,建立空间直角坐标系F—xyz.
不妨设AD=2,由CD=AD,∠CAD=30°,易知点A,C,D的坐标分别为
![]()
![]()
显然向量
是平面ABC的法向量.
已知二面角C—AB—D为60°,
故可取平面ABD的单位法向量
,
使得![]()
![]()
设点B的坐标为
,有
![]()
易知
与坐标系的建立方式不合,舍去.
因此点B的坐标为
所以![]()
从而
![]()
故异面直线AD与BC所成的角的余弦值为![]()
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com