【题目】若
(
)恰有1个零点,则实数
的取值范围为( )
A.
B.
C.
D.![]()
【答案】B
【解析】
令
得到
,问题转化为函数
的图象与直线
在
上恰有1个交点,用导数法作出
的图像,根据图像求出直线与函数
只有一个交点满足的条件,即可求出结论.
由
恰有1个零点,方程
恰有1个解,即方程
恰有1个解,即函数
的图象与直线
在
上恰有1个交点,因为
,当
时,
,当
时,
,所以
在区间
上都是减函数,在
是增函数,当
时,
取极小值
,直线
过点
,斜率为
,显然
是函数
的图象与直线
的一个交点,这两个图象不能有其他交点,作出函数
与
的图象,由图可知,当
时,直线
应在函数
(
)的图象上方,
设
,即
恒成立,因为
,
只需
为减函数,所以
,即
恒成立,设
,设
,则
,![]()
,当且仅当
,即
,即
,
即
时,
,所以
,当
时,直线
与
相切,也适合,故满足题意
的取值范围为
.
故选:B.
![]()
科目:高中数学 来源: 题型:
【题目】新高考
最大的特点就是取消文理科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这
科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全理(选择物理、化学、生物)的选择是否与性别有关,觉得从某学校高一年级的
名学生中随机抽取男生,女生各
人进行模拟选科.经统计,选择全理的人数比不选全理的人数多
人.
![]()
(1)请完成下面的
列联表;
(2)估计有多大把握认为选择全理与性别有关,并说明理由;
(3)现从这
名学生中已经选取了男生
名,女生
名进行座谈,从中抽取
名代表作问卷调查,求至少抽到一名女生的概率.
附:
,其中
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个结论,正确的是( )
①质检员从匀速传递的产品生产流水线上,每间隔15分钟抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②在回归直线方程
中,当变量
每增加一个单位时,变量
增加0.13个单位;
③在频率分布直方图中,所有小矩形的面积之和是1;
④对于两个分类变量
与
,求出其统计量
的观测值
,观测值
越大,我们认为“
与
有关系”的把握程度就越大.
A.②④B.②③C.①③D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)选修4—4,坐标系与参数方程
已知曲线
,直线
:
(
为参数).
(I)写出曲线
的参数方程,直线
的普通方程;
(II)过曲线
上任意一点
作与
夹角为
的直线,交
于点
,
的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年上半年我国多个省市暴发了“非洲猪瘟”疫情,生猪大量病死,存栏量急剧下降,一时间猪肉价格暴涨,其他肉类价格也跟着大幅上扬,严重影响了居民的生活.为了解决这个问题,我国政府一方面鼓励有条件的企业和散户防控疫情,扩大生产;另一方面积极向多个国家开放猪肉进口,扩大肉源,确保市场供给稳定.某大型生猪生产企业分析当前市场形势,决定响应政府号召,扩大生产决策层调阅了该企业过去生产相关数据,就“一天中一头猪的平均成本与生猪存栏数量之间的关系”进行研究.现相关数据统计如下表:
生猪存栏数量 | 2 | 3 | 4 | 5 | 8 |
头猪每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 |
(1)研究员甲根据以上数据认为
与
具有线性回归关系,请帮他求出
关于
的线.性回归方程
(保留小数点后两位有效数字)
(2)研究员乙根据以上数据得出
与
的回归模型:
.为了评价两种模型的拟合效果,请完成以下任务:
①完成下表(计算结果精确到0.01元)(备注:
称为相应于点
的残差);
生猪存栏数量 | 2 | 3 | 4 | 5 | 8 | |
头猪每天平均成本 | 3.2 | 2.4 | 2 | 1.9 | 1.5 | |
模型甲 | 估计值 | |||||
残差 | ||||||
模型乙 | 估计值 | 3.2 | 2.4 | 2 | 1.76 | 1.4 |
残差 | 0 | 0 | 0 | 0.14 | 0.1 | |
②分别计算模型甲与模型乙的残差平方和
及
,并通过比较
的大小,判断哪个模型拟合效果更好.
(3)根据市场调查,生猪存栏数量达到1万头时,饲养一头猪每一天的平均收入为7.5元;生猪存栏数量达到1.2万头时,饲养一头猪每一天的平均收入为7.2元若按(2)中拟合效果较好的模型计算一天中一头猪的平均成本,问该生猪存栏数量选择1万头还是1.2万头能获得更多利润?请说明理由.(利润=收入-成本)
参考公式:
.
参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)求函数
的极值;
(2)对于曲线上的不同两点
,如果存在曲线上的点
,且
使得曲线在点
处的切线
,则称
为弦
的伴随直线,特别地,当
时,又称
为
的
—伴随直线.
①求证:曲线
的任意一条弦均有伴随直线,并且伴随直线是唯一的;
②是否存在曲线
,使得曲线
的任意一条弦均有
—伴随直线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com