【题目】新高考
最大的特点就是取消文理科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这
科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全理(选择物理、化学、生物)的选择是否与性别有关,觉得从某学校高一年级的
名学生中随机抽取男生,女生各
人进行模拟选科.经统计,选择全理的人数比不选全理的人数多
人.
![]()
(1)请完成下面的
列联表;
(2)估计有多大把握认为选择全理与性别有关,并说明理由;
(3)现从这
名学生中已经选取了男生
名,女生
名进行座谈,从中抽取
名代表作问卷调查,求至少抽到一名女生的概率.
附:
,其中
.
![]()
科目:高中数学 来源: 题型:
【题目】如图是甲、乙、丙三个企业的产品成本(单位:万元)及其构成比例,则下列判断正确的是( )
![]()
A. 乙企业支付的工资所占成本的比重在三个企业中最大
B. 由于丙企业生产规模大,所以它的其他费用开支所占成本的比重也最大
C. 甲企业本着勤俭创业的原则,将其他费用支出降到了最低点
D. 乙企业用于工资和其他费用支出额比甲丙都高
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市
户居民的月平均用电量(单位:度),以
,
,
,
,
,
,
分组的频率分布直方图如图.
![]()
(1)求直方图中
的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为
,
,
,
的四组用户中,用分层抽样的方法抽取
户居民,则月平均用电量在
的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,其中
.
(1)当
时,求函数
单调递增区间;
(2)求函数
的图象在点
处的切线方程;
(3)是否存在实数
的值,使得
在
上有最大值或最小值,若存在,求出实数
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,
是等腰三角形,且
.四边形ABCD是直角梯形,
,
,
,
,
.
![]()
(1)求证:
平面PDC.
(2)请在图中所给的五个点P,A,B,C,D中找出两个点,使得这两点所在直线与直线BC垂直,并给出证明.
(3)当平面
平面ABCD时,求直线PC与平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,
平面
,
是正三角形,
,
.
![]()
(1)求平面
与平面
所成的锐二面角的大小;
(2)点
为线段
上的一动点,设异面直线
与直线
所成角的大小为
,当
时,试确定点
的位置.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com