【题目】判断下列结论是否正确(正确的在括号内打“√”,错误的打“×”),并说明理由.
(1)若
与
都是单位向量,则
.( )
(2)方向为南偏西60°的向量与北偏东60°的向量是共线向量.( )
(3)直角坐标平面上的x轴、y轴都是向量.( )
(4)若
与
是平行向量,则
.( )
(5)若用有向线段表示的向量
与
不相等,则点M与N不重合.( )
(6)海拔、温度、角度都不是向量.( )
【答案】(1)×;(2)√;(3)×;(4)×;(5)√;(6)√.
【解析】
(1)根据相等向量的定义判断即可;
(2)根据方位角的定义和共线向量的定义判断即可;
(3)根据向量的定义直接判断即可;
(4)根据平行向量和相等向量的定义判断即可;
(5)根据相等向量的定义进行判断即可;
(6)根据向量的定义直接判断即可.
解:(1)×因为单位向量的长度(模)尽管都是1,但方向不一定相同.
(2)√因为两个向量的方向相反,所以是共线向量.
(3)×因为x轴与y轴只有方向,没有大小,所以不是向量.
(4)×因为同向或反向的向量是平行向量,a与b的方向不一定相间,模也不一定相等,所以
不一定成立.
(5)√假设点M与N重合,则
,这与
与
不相等矛盾.所以点M与N不重合.
(6)√因为海拔、温度、角度只有大小,没有方向,所以它们都不是向量.
故答案为:×;√;×;×;√;√
科目:高中数学 来源: 题型:
【题目】已知向量
,
,设函数
.
(1)若函数
的图象关于直线
对称,且
时,求函数
的单调增区间;
(2)在(1)的条件下,当
时,函数
有且只有一个零点,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,任取
,若函数
在区间
上的最大值为
,最小值为
,记
.
(1)求函数
的最小正周期及对称轴方程;
(2)当
时,求函数
的解析式;
(3)设函数
,
,其中
为参数,且满足关于
的不等式
有解,若对任意
,存在
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数
在某一个周期内的图象时,列表并填入了部分数据,如下表:
|
|
|
|
|
|
|
|
| |||
|
|
|
|
|
(1)请将上表数据补充完整;函数
的解析式为
(直接写出结果即可);
(2)根据表格中的数据作出
一个周期的图象;
(3)求函数
在区间
上的最大值和最小值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)=|x﹣m|+|x|,m∈N*,存在实数x使f(x)<2成立.
(1)求实数m的值;
(2)若α≥1,β≥1,f(α)+f(β)=4,求证:
≥3.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com