【题目】设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为
,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
【答案】
(1)解:由对称性知:△BFD是等腰直角△,斜边|BD|=2p
点A到准线l的距离
,
∵△ABD的面积S△ABD=
,
∴
=
,
解得p=2,所以F坐标为(0,1),
∴圆F的方程为x2+(y﹣1)2=8
(2)解:由题设
,则
,
∵A,B,F三点在同一直线m上,
又AB为圆F的直径,故A,B关于点F对称.
由点A,B关于点F对称得: ![]()
得:
,直线
,
切点 ![]()
直线 ![]()
坐标原点到m,n距离的比值为 ![]()
【解析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离
,由△ABD的面积S△ABD=
,知
=
,由此能求出圆F的方程.(2)由对称性设
,则
点A,B关于点F对称得:
,得:
,由此能求出坐标原点到m,n距离的比值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx,g(x)=
x2﹣kx;
(1)设k=m+
(m>0),若函数h(x)=f(x)+g(x)在区间(0,2)内有且仅有一个极值点,求实数m的取值范围;
(2)设M(x)=f(x)﹣g(x),若函数M(x)存在两个零点x1 , x2(x1>x2),且满足2x0=x1+x2 , 问:函数M(x)在(x0 , M(x0))处的切线能否平行于直线y=1,若能,求出该切线方程,若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的离心率为
,F是椭圆C的右焦点.过点F且斜率为k(k≠0)的直线l与椭圆C交于A,B两点,O是坐标原点.
(1)求n的值;
(2)若线段AB的垂直平分线在y轴的截距为
,求k的值;
(3)是否存在点P(t,0),使得PF为∠APB的平分线?若存在,求出t的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的离心率为
,
为椭圆
上位于第一象限内的一点.
(1)若点
的坐标为
,求椭圆
的标准方程;
(2)设
为椭圆
的左顶点,
为椭圆
上一点,且
,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.![]()
(1)证明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2.∠ABC=∠DBC=120°,E、F分别为AC、DC的中点. ![]()
(1)求证:EF⊥BC;
(2)求二面角E﹣BF﹣C的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com