精英家教网 > 高中数学 > 题目详情

【题目】“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是

A. B. C. D.

【答案】D

【解析】

所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元,

5份,供甲、乙等5人抢,每人只能抢一次,

基本事件总数

其中甲、乙二人抢到的金额之和不低于3元的情况有:

(1.72,1.83),(1.72,2.28),(1.72,1.55),(1.83,2.28),(1.83,1.55),(2.28,1.55),共有6种,

∴甲、乙二人抢到的金额之和不低于3元的概率.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)平面直角坐标系xoy中,直线截以原点O为圆心的圆所得的弦长为

1)求圆O的方程;

2)若直线与圆O切于第一象限,且与坐标轴交于DE,当DE长最小时,求直线的方程;

3)设MP是圆O上任意两点,点M关于x轴的对称点为N,若直线MPNP分别交于x轴于点(m,0)和(n,0),问mn是否为定值?若是,请求出该定值;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处有极值,且其图像在处的切线与直线平行.

(I).求函数的单调区间;

(II).求函数的极大值与极小值的差;

(III).若时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为正数,满足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求证:
(2)若{an}是等比数列,求数列{an}的通项公式;
(3)设数列{an}的前n项和为Sn , 求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

Ⅰ)当时,求函数的单调递减区间;

Ⅱ)若对任意的为自然对数的底数)都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图三棱柱中,侧面为菱形,.

(Ⅰ)证明:

(Ⅱ)若AB=BC,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.

(1)请根据2、3、4、5月的数据,求出y关于x的线性回归方程

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

(参考公式:

参考数据:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为 ,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国魏人刘徽,自撰《海岛算经》,专论测高望远.其中有一题今有望海岛,立两表齐,高三丈,前後相去千步,令後表与前表相直。从前表却行一百二十三步,人目著地取望岛峰,与表末参合。从後表却行百二十七步,人目著地取望岛峰,亦与表末参合。问岛高及去表各几何?翻译如下:要测量海岛上一座山峰的高度,立两根高三丈的标杆前后两竿相距,使后标杆杆脚与前标杆杆脚与山峰脚在同一直线上,从前标杆杆脚退行步到,人眼著地观测到岛峰,、三点共线,从后标杆杆脚退行步到,人眼著地观测到岛峰,三点也共线,山峰的高度__________步.(古制尺,步)

查看答案和解析>>

同步练习册答案