【题目】已知
中,角
、
、
所对的边分别是
、
、
,且
,
,有以下四个命题:①满足条件的
不可能是直角三角形;②当
时,
的周长为15;③当![]()
时,若
为
的内心,则
的面积为
;④
的面积的最大值为40.其中正确命题有__________(填写出所有正确命题的序号).
【答案】②③④
【解析】
①,考虑勾股定理的逆定理,即可判断;
②,运用正弦定理可得
,运用三角函数的恒等变换,即可得到所求周长;
③,运用正弦定理和三角函数的恒等变换、三角形的面积公式和等积法,即可得到所求面积.
④,运用圆的方程和三角形的面积公式,即可得到所求最大值;
对于①,
,
即
,设
,由
,可得
,满足条件的
可能是直角三角形,故①错误;
对于②,
,
,
,可得
,由正弦定理可得
,可得
,由
可得:
,解得
可得
,可得:
,则
,故②正确;
对于③,由②得
.
设
的内切圆半径为
,则
.故③正确.
对于④,对于①,以
的中点为坐标原点,
所在直线为
轴,可得
,可得
,设
,
可得
,平方可得
,
即有
化为
则
的轨迹是以
,半径为
的圆,可得
的面积的最大值为
故④正确;
故答案为:②③④.
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解学生的学习情况,一次测试中,科任老师从本班中抽取了n个学生的成绩(满分100分,且抽取的学生成绩均在
内)进行统计分析.按照
,
,
,
,
,
的分组作出频率分布直方图和频数分布表.
![]()
频数分布表 | |
| x |
| 4 |
| 10 |
| 12 |
| 8 |
| 4 |
(1)求n,a,x的值;
(2)在选取的样本中,从低于60分的学生中随机抽取两名学生,试问这两名学生在同一组的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代的数学名著,书中把三角形的田称为“圭田”,把直角梯形的田称为“邪田”,称底是“广”,称高是“正从”,“步”是丈量土地的单位.现有一邪田,广分别为十步和二十步,正从为十步,其内有一块广为八步,正从为五步的圭田.若在邪田内随机种植一株茶树,求该株茶树恰好种在圭田内的概率为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近期,济南公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用
表示活动推出的天数,
表示每天使用扫码支付的人次(单位:十人次),统计数据如表
所示:
![]()
根据以上数据,绘制了散点图.
![]()
(1)根据散点图判断,在推广期内,
与
(
均为大于零的常数)哪一个适宜作为扫码支付的人次
关于活动推出天数
的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表
中的数据,建立
关于
的回归方程,并预测活动推出第
天使用扫码支付的 人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下
![]()
车队为缓解周边居民出行压力,以
万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为
万元.已知该线路公交车票价为
元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受
折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有
的概率享受
折优惠,有
的概率享受
折优惠,有
的概率享受
折优惠.预计该车队每辆车每个月有
万人次乘车,根据给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要
年才能开始盈利,求
的值.
参考数据:
![]()
其中其中![]()
参考公式:
对于一组数据
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应绿色出行,某市在推出“共享单车”后,又推出“新能源分时租赁汽车”.其中一款新能源分时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按1元/公里计费;②行驶时间不超过
分时,按
元/分计费;超过
分时,超出部分按
元/分计费.已知王先生家离上班地点15公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间
(分)是一个随机变量.现统计了50次路上开车花费时间,在各时间段内的频数分布情况如下表所示:
时间 |
|
|
|
|
频数 | 2 | 18 | 20 | 10 |
将各时间段发生的频率视为概率,每次路上开车花费的时间视为用车时间,范围为
分.
(1)写出王先生一次租车费用
(元)与用车时间
(分)的函数关系式;
(2)若王先生一次开车时间不超过40分为“路段畅通”,设
表示3次租用新能源分时租赁汽车中“路段畅通”的次数,求
的分布列和期望;
(3)若公司每月给1000元的车补,请估计王先生每月(按22天计算)的车补是否足够上、下班租用新能源分时租赁汽车?并说明理由.(同一时段,用该区间的中点值作代表)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com