【题目】已知两个不相等的非零向量
,
,两组向量
,
,
,
,
和
,
,
,
,
均由2个
和3个
排列而成,记
,
表示S所有可能取值中的最小值,则下列命题中真命题的序号是________.(写出所有真命题的序号)
①S有5个不同的值;②若
,则
与
无关;③若
,则
与
无关;
④若
,则
;⑤若
,
,则
与
的夹角为
.
科目:高中数学 来源: 题型:
【题目】对于一个向量组
,令
,如果存在
,使得
,那么称
是该向量组的“长向量”
(1)若
是向量组
的“长向量”,且
,求实数
的取值范围;
(2)已知
,
,
均是向量组
的“长向量”,试探究
,
,
的等量关系并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
、
分别是椭圆
的左、右焦点,点
在椭圆
上,且
的面积为
.
![]()
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
、
两点,
为坐标原点,
轴上是否存在点
,使得
,若存在,求出
点的坐标;若不存在,请说明理由;
(3)设
为椭圆
上非长轴顶点的任意一点,
为线段
上一点,若
与
的内切圆面积相等,求证:线段
的长度为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
以直角坐标系的原点
为极点,
轴的正半轴为极轴建立极坐标系,已知点
的直角坐标为
,若直线
的极坐标方程为
曲线
的参数方程是
(
为参数).
(1)求直线
和曲线
的普通方程;
(2)设直线
和曲线
交于
两点,求![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
的焦点为
,准线为
,
与
轴的交点为
,点
在抛物线
上,过点
作
于点
,如图1.已知
,且四边形
的面积为
.
![]()
![]()
(1)求抛物线
的方程;
(2)若正方形
的三个顶点
,
,
都在抛物线
上(如图2),求正方形
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在
内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(分第一~五组区间分别为
,
,
,
,
,
).
![]()
(1)求选取的市民年龄在
内的人数;
(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中作重点发言,求作重点发言的市民中至少有一人的年龄在
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】南方智运汽车公司在我市推出了共享汽车“Warmcar”,有一款车型为“众泰云”新能源共享汽车,其中一种租用方式“分时计费”规则为:0.15元/分钟+0.8元/公里.已知小李家离上班地点为10公里,每天租用该款汽车上、下班各一次,由于堵车、及红绿灯等原因每次路上开车花费的时间
(分钟)是一个随机变量,现统计了100次路上开车花费时间,在各时间段内是频数分布情况如下表所示:
时间 |
|
|
|
|
|
|
|
频数 | 2 | 6 | 14 | 36 | 28 | 10 | 4 |
(1)写出小李上班一次租车费用
(元)与用车时间
(分钟)的函数关系;
(2)根据上面表格估计小李平均每次租车费用;
(3)“众泰云”新能源汽车还有一种租用方式为“按月计费”,规则为每个月收取租金2350元,若小李每个月上班时间平均按21天计算,在不计电费和情况下,请你为小李选择一种省钱的租车方式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:①若线性回归方程为
,则当变量
增加一个单位时,
一定增加3个单位;②将一组数据中的每个数据都加上同一个常数后,方差不会改变;③线性回归直线方程
必过点
;④抽签法属于简单随机抽样;其中错误的说法是( )
A.①③B.②③④C.①D.①②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com