【题目】如图,
是边长为2的正方形,平面
平面
,且
,
是线段
的中点,过
作直线
,
是直线
上一动点.
![]()
(1)求证:
;
(2)若直线
上存在唯一一点
使得直线
与平面
垂直,求此时二面角
的余弦值.
【答案】(1)见解析;(2)![]()
【解析】
(1)先证EO⊥面ABCD,进而可得BC⊥面EOF,从而可证OF⊥BC;
(2)由(1)可得
平面
,得到
、
、
两两垂直,可建立空间直角坐标系
,由条件得到
,转化为向量
,从而
,转化为关于
的方程有唯一实数解,得到
,
,又判断∠BFC为二面角B﹣OF﹣C的平面角,利用向量夹角公式可求二面角B﹣OF﹣C的余弦值.
(1)因为
,
是
中点,故
,
又因为平面
平面
,平面
平面
,
故
平面
,所以
;
因为
,
,所以
,
故
平面
,
所以
.
(2)设
的中点为
,则有
,由(1),
平面
,
所以
、
、
两两垂直.可如图建立空间直角坐标系
.
依题意设点
的坐标为
,点
的坐标为
,又
,
,
所以
,
,
由(1)知
,故
与平面
垂直,等价于
,
故
,从而
,即
,
直线
上存在唯一一点
使得直线
与平面
垂直,即关于
的方程有唯一实数解.
所以
,解得
,此时
.
故点
的坐标为
,点
的坐标为
.
因为
平面
,所以
且
,
所以
即二面角
的平面角.
因为
,
,
所以
,
即若直线
上存在唯一一点
使得直线
与平面
垂直时,
所以二面角
的余弦值为
.
![]()
科目:高中数学 来源: 题型:
【题目】在单位正方体
中,点
在线段
上运动,给出以下三个命题:
①三棱锥
的体积为定值; ②二面角
的大小为定值;
③异面直线
与直线
所成的角为定值;
其中真命题有( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】画糖是一种以糖为材料在石板上进行造型的民间艺术,常见于公园与旅游景点.某师傅制作了一种新造型糖画,为了进行合理定价先进性试销售,其单价
(元)与销量
(个)相关数据如下表:
![]()
(1)已知销量
与单价
具有线性相关关系,求
关于
的线性相关方程;
(2)若该新造型糖画每个的成本为
元,要使得进入售卖时利润最大,请利用所求的线性相关关系确定单价应该定为多少元?(结果保留到整数)
参考公式:线性回归方程
中斜率和截距最小二乘法估计计算公式:
![]()
.参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD
中,以D为原点建立空间直角坐标系,E为B
的中点,F为
的中点,则下列向量中,能作为平面AEF的法向量的是( )
![]()
A. (1,-2,4) B. (-4,1,-2)
C. (2,-2,1) D. (1,2,-2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成
,
,
,
,
,
六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题:
![]()
(1)求分数
内的频率,并补全这个频率分布直方图;
(2)从频率分布直方图中,估计本次考试成绩的中位数;
(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着中国经济的腾飞,互联网的快速发展,网络购物需求量不断增大.某物流公司为扩大经营,今年年初用192万元购进一批小型货车,公司第一年需要付保险费等各种费用共计12万元,从第二年起包括保险费、维修费等在内的所需费用比上一年增加6万元,且该批小型货车每年给公司带来69万元的收入.
(1)若该批小型货车购买n年后盈利,求n的范围;
(2)该批小型货车购买几年后的年平均利润最大,最大值是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过椭圆
的左焦点
作斜率为
的直线交椭圆于
,
两点,
为弦
的中点,直线
交椭圆于
,
两点.
(1)设直线
的斜率为
,求
的值;
(2)若
,
分别在直线
的两侧,
,求
的面积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com