【题目】已知椭圆
的左、右焦点分别为
、
,离心率为
,点
是椭圆
上的一个动点,且
面积的最大值为
.
(1)求椭圆
的方程;
(2)过点
作直线
交椭圆
于
、
两点,过点
作直线
的垂线
交圆
:
于另一点
.若
的面积为3,求直线
的斜率.
【答案】(1)
(2)![]()
【解析】
(1)由题意可知:当
为
的短轴顶点时,
面积取最大值,又离心率为
,则可以列出方程
,解出
的值即可求出椭圆的方程.(2)首先讨论两条直线中斜率为0和斜率不存在的情况,判断三角形的面积是否为3;然后讨论一般情况,设直线
的方程为
,直线
的方程为
,分别与椭圆和圆联立,用K表示出线段AB的长和点N到直线
的距离,表示出
的面积,即可求出斜率的值.
解:(1)∵椭圆
的离心率为
,当
为
的短轴顶点时,
的面积有最大值
.
∴
,解得
,
故椭圆
的方程为:
.
(2)若
的斜率为0,则
,
,
∴
的面积为
,不合题意,所以直线
的斜率不为0.
设直线
的方程为
,
由
消去
得
,
设
,
,
则
,
,
∴
.
直线
的方程为
,即
,
∴
.
∴
的面积
,
解得
,即直线
的斜率为
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的一个焦点
与抛物线
:
的焦点重合,且离心率为
.
(1)求椭圆
的标准方程;
(2)过焦点
的直线
与抛物线
交于
,
两点,与椭圆
交于
,
两点,满足
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数
与
的和表示
等.从
这100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是________.(按照从大到小的顺序排列)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的通项公式为
(
,
),数列
定义如下:对于正整数
,
是使得不等式
成立的所有
中的最小值.
(1)若
,
,求
;
(2)若
,
,求数列
的前
项和公式;
(3)是否存在
和
,使得
?如果存在,求
和
的取值范围;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
的前
项和记为
若对任意的正整数n,总存在正整数m,使得
,则称
是“H数列”.
(1)若数列
的通项公式
,判断
是否为“H数列”;
(2)等差数列
,公差
,
,求证:
是“H数列”;
(3)设点
在直线
上,其中
,
.若
是“H数列”,求
满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知数列
和
满足:
,
,
,其中
为实数,
为正整数.
(Ⅰ)对任意实数
,证明:数列
不是等比数列;
(Ⅱ)证明:当
时,数列
是等比数列;
(Ⅲ)设
(
为实常数),
为数列
的前
项和.是否存在实数
,使得对任意正整数
,都有
?若存在,求
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:在直角坐标系
中,设椭圆
的左右两个焦点分别为
、
.过右焦点
与
轴垂直的直线
与椭圆C相交,其中一个交点为
.
![]()
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为
,求点M到直线
的距离;
(3)过
中点的直线
交椭圆于P、Q两点,求
长的最大值以及相应的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
是抛物线
:
的焦点,直线
与抛物线
相切于点
,连接
交抛物线于另一点
,过点
作
的垂线交抛物线
于另一点
.
![]()
(1)若
,求直线
的方程;
(2)求三角形
面积
的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com