精英家教网 > 高中数学 > 题目详情
(2012•江苏一模)已知函数f(x)=x+sinx.
(1)设P,Q是函数f(x)的图象上相异的两点,证明:直线PQ的斜率大于0;
(2)求实数a的取值范围,使不等式f(x)≥axcosx在[0,
π2
]
上恒成立.
分析:(1)先利用导数研究函数的单调性,然后设P(x1,y1),Q(x2,y2),根据斜率的定义建立关系式,从而可知可证结论;
(2)设Q(x)=g(x)-f(x)=axcosx-x-sinx,x∈[0,
π
2
]
,然后利用导数研究函数的最小值,使得Q(x)min≥0即可.
解答:解:(1)∵f(x)=x+sinx
∴f'(x)=1+cosx≥0
∴函数f(x)在R上单调递增
设P(x1,y1),Q(x2,y2)则
y2-y1
x2-x1
>0
,即kPQ>0
∴直线PQ的斜率大于0;
(2)依题意得,设Q(x)=g(x)-f(x)=axcosx-x-sinx,x∈[0,
π
2
]

1°当a≤0时,Q(x)≤0恒成立; …(8分)
2°当a>0时,Q'(x)=(a-1)cosx-axsinx-1,…(10分)
①0<a≤2时,Q'(x)≤0,Q(x)在[0,
π
2
]
上单调递减,
所以Q(x)≤Q(0)=0恒成立;…(12分)
②a>2时,注意到当x∈[0,  
π
2
]
时,x≥sinx,
于是Q(x)=axcosx-x-sinx≥axcosx-2x=x(acosx-2),
必存在x0∈(0,
π
2
)
,使得当x∈(0,x0)时,有Q(x0)>0,不能使Q(x)≤0恒成立.
综上所述,实数a的取值范围为a≤2. …(16分)
点评:本题主要考查函数的概念、性质及导数等基础知识,考查灵活运用数学结合、分类讨论的思想进行探究、分析与解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江苏一模)已知椭圆的方程为
x2
a2
+
y2
b2
=1(a>b>0)
,过椭圆的右焦点且与x轴垂直的直线与椭圆交于P、Q两点,椭圆的右准线与x轴交于点M,若△PQM为正三角形,则椭圆的离心率等于
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)观察下列等式:
13=1,
13+23=9,
13+23+33=36,
13+23+33+43=100

猜想:13+23+33+43+…+n3=
[
n(n+1)
2
]2
[
n(n+1)
2
]2
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)设数列{an}的前n项和为Sn,已知Sn+1=pSn+q(p,q为常数,n∈N*),如果:a1=2,a2=1,a3=q-3p.
(1)求p,q的值;
(2)求数列{an}的通项公式;
(3)是否存在正整数m,n,使
Sn-m
Sn+1-m
2m
2m+1
成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)选修4-1:几何证明选讲
如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.
求证:BT平分∠OBA.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏一模)选修4-2:矩阵与变换
在极坐标系中,A为曲线ρ2+2ρcosθ-3=0上的动点,B为直线ρcosθ+ρsinθ-7=0上的动点,求AB的最小值.

查看答案和解析>>

同步练习册答案