【题目】如果
是抛物线
上的点,它们的横坐标依次为
,
是抛物线的焦点,若
,则
_______________.
【答案】![]()
【解析】
分析: 根据抛物线的定义得抛物线上的点到焦点的距离等于该点到准线的距离,因此求出抛物线的准线方程,结合题中数据加以计算,即可得到本题答案.
详解: ∵抛物线y2=4x的焦点为F(1,0),准线为x=﹣1,
∴根据抛物线的定义,Pi(i=1,2,3,…,8)到焦点的距离等于Pi到准线的距离,即|PiF|=xi+1,
可得|P1F|+|P2F|+…|P8F|=(x1+1)+(x2+1)+…+(x8+1)=(
)+8,
∵
,
∴
10+8=18.
故答案为:18
点睛: 1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.本题中充分运用抛物线定义实施转化,其关键在于求点
的坐标.
2.若
为抛物线
上一点,由定义易得
;若过焦点的弦
的端点坐标为
,则弦长为
可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.
科目:高中数学 来源: 题型:
【题目】设
是平面内共始点的三个非零向量,且两两不共线,
有下列命题:
(1)关于
的方程
可能有两个不同的实数解;
(2)关于
的方程
至少有一个实数解;
(3)关于
的方程
最多有一个实数解;
(4)关于
的方程
若有实数解,则三个向量的终点不可能共线;
上述命题正确的序号是__________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),若以该直角坐标系的原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为:
(其中
为常数).
(1)若曲线
与曲线
有两个不同的公共点,求
的取值范围;
(2)当
时,求曲线
上的点与曲线
上点的最小距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
内一点
,
点为圆
上任意一点,线段
的垂直平分线与线段
连线交于点
.
(1)求点
的轨迹方程;
(2)设点
的轨迹为曲线
,过点
的直线
与曲线
交于不同的两点
、
,求
的内切圆半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.2018年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产x(百辆),需另投入成本
万元,且
.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.
(1)求出2018年的利润L(x)(万元)关于年产量x(百辆)的函数关系式;(利润=销售额-成本)
(2)2018年产量为多少百辆时,企业所获利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的方程为
,
是椭圆上的一点,且
在第一象限内,过
且斜率等于-1的直线与椭圆
交于另一点
,点
关于原点的对称点为
.
![]()
(1)证明:直线
的斜率为定值;
(2)求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“科技引领,布局未来”科技研发是企业发展的驱动力量。
年,某企业连续
年累计研发投入搭
亿元,我们将研发投入与经营投入的比值记为研发投入占营收比,这
年间的研发投入(单位:十亿元)用右图中的折现图表示,根据折线图和条形图,下列结论错误的使( )
![]()
A.
年至
年研发投入占营收比增量相比
年至
年增量大
B.
年至
年研发投入增量相比
年至
年增量小
C. 该企业连续
年研发投入逐年增加
D. 该企业来连续
年来研发投入占营收比逐年增加
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com