精英家教网 > 高中数学 > 题目详情

[例] 定义在R上的函数,当x>0时,,且对任意的ab∈R,有fa+b)=fa)·fb).

(1)求证:f(0)=1;

(2)求证:对任意的x∈R,恒有fx)>0;

(3)求证:fx)是R上的增函数;

(4)若fx)·f(2xx2)>1,求x的取值范围.


解析:

抽象函数问题要充分利用“恒成立”进行“赋值”,从关键等式和不等式的特点入手。

(1)证明:令a=b=0,则f(0)=f 2(0).

f(0)≠0,∴f(0)=1.

(2)证明:当x<0时,-x>0,

f(0)=fx)·f(-x)=1.

f(-x)=>0.又x≥0时fx)≥1>0,

x∈R时,恒有fx)>0.

(3)证明:设x1x2,则x2x1>0.

fx2)=fx2x1+x1)=fx2x1)·fx1).

x2x1>0,∴fx2x1)>1.

fx1)>0,∴fx2x1)·fx1)>fx1).

fx2)>fx1).∴fx)是R上的增函数.

(4)解:由fx)·f(2xx2)>1,f(0)=1得f(3xx2)>f(0).又fx)是R上的增函数,

∴3xx2>0.∴0<x<3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

记函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,x0)为坐标的点为函数f(x)图象上的不动点.
(1)若函数f(x)=
3x+a
x+b
图象上有两个关于原点对称的不动点,求实数a,b应满足的条件;
(2)设点P(x,y)到直线y=x的距离d=
|x-y|
2
.在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A1,A2,P为函数f(x)图象上的另一点,其纵坐标yP>3,求点P到直线A1A2距离的最小值及取得最小值时点P的坐标.
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,请给予证明;若不正确,请举一反例.若地方不够,可答在试卷的反面.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在x0∈D,使f(x0)=x0成立,则称以(x0,x0)为坐标的点为函数f(x)图象上的不动点.
(1)若函数f(x)=
3x+ax+b
图象上有两个关于原点对称的不动点,求a,b应满足的条件;
(2)在(1)的条件下,若a=8,记函数f(x)图象上的两个不动点分别为A、B,点M为函数图象上的另一点,且其纵坐标yM>3,求点M到直线AB距离的最小值及取得最小值时M点的坐标;
(3)下述命题“若定义在R上的奇函数f(x)图象上存在有限个不动点,则不动点的有奇数个”是否正确?若正确,给出证明,并举一例;若不正确,请举一反例说明.

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第09课时):第二章 函数-函数的解析式及定义域(解析版) 题型:解答题

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

同步练习册答案