精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)= +lg(x+2)的定义域为(
A.(﹣2,1)
B.(﹣2,1]
C.[﹣2,1)
D.[﹣2,﹣1]

【答案】B
【解析】解:根据题意可得 解得﹣2<x≤1
所以函数的定义域为(﹣2,1]
故选B
【考点精析】解答此题的关键在于理解函数的定义域及其求法的相关知识,掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零,以及对对数函数的定义域的理解,了解对数函数的定义域范围:(0,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数y=x3﹣2ax+a在(1,2)内有极小值,则实数a的取值范围是(
A.(0,
B.(0,3)
C.( ,6)
D.(0,6)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在D上的函数f(x),若存在距离为d的两条直线y=kx+m1和y=kx+m2 , 使得对任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,则称函数f(x)(x∈D)有一个宽度为d的通道.给出下列函数: ①f(x)=
②f(x)=sinx;
③f(x)=
④f(x)=
其中在区间[1,+∞)上通道宽度可以为1的函数有(写出所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对任意实数x,y恒有f(x)=f(y)+f(x﹣y),当x>0时,f(x)<0,且f(2)=﹣3.
(1)求f(0),并判断函数f(x)的奇偶性;
(2)证明:函数f(x)在R上的单调递减;
(3)若不等式f(2x﹣3)﹣f(﹣22x)<f(k2x)+6在区间(﹣2,2)内恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=f(x)的图象向右平移 单位得到函数y=cos2x的图象,则f(x)=(
A.﹣sin2x
B.cos2x
C.sin2x
D.﹣cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题。
(1)已知集合A={x|ax2﹣3x+1=0,a∈R},若A中只有一个元素,求a的取值范围.
(2)集合A={x|x2﹣6x+5<0},C={x|3a﹣2<x<4a﹣3},若CA,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x≠1)
(1)证明f(x)在(1,+∞)上是减函数;
(2)令g(x)=lnf(x),判断g(x)=lnf(x)的奇偶性并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在区间上单调递减的是

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

如图所示,正方形与矩形所在平面互相垂直,

(1)若点分别为的中点,求证:平面平面

(2)在线段上是否存在一点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案