精英家教网 > 高中数学 > 题目详情
1.(a+x)(1-x)4的展开式中x的奇数次幂项的系数之和为32,则a的值为(  )
A.-3B.3C.-5D.5

分析 给展开式中的x分别赋值1,-1,可得两个等式,两式相减,再除以2得到答案.

解答 解:设f(x)=(a+x)(1-x)4=a0+a1x+a2x2+…+a5x5
令x=1,则a0+a1+a2+…+a5=f(1)=0,①
令x=-1,则a0-a1+a2-…-a5=f(-1)=16(a-1);②
①-②得,2(a1+a3+a5)=-16(a-1),
所以2×32=-16(a-1),
所以a=-3.
故选:A.

点评 本题考查了二项式展开式的系数问题,一般先设出展开式,再用赋值法代入特殊值,相加或相减即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在三棱锥P-ABC中,PB⊥AC,PB=9,AC=6,G为△PAC的重心,过点G作三棱锥的一个截面,使截面平行于直线PB和AC,则截面的面积为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,点C在以AB为直径的圆O上,PA垂直于圆O所在的平面,G为△AOC的重心.
(1)求证:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,求二面角A-OP-G的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的长轴长为2$\sqrt{2}$,且椭圆C与圆M:(x-1)2+y2=$\frac{1}{2}$的公共弦长为$\sqrt{2}$.
(1)求椭圆C的方程.
(2)经过原点作直线l(不与坐标轴重合)交椭圆于A,B两点,AD⊥x轴于点D,点E在椭圆C上,且$({\overrightarrow{AB}-\overrightarrow{EB}})•({\overrightarrow{DB}+\overrightarrow{AD}})=0$,求证:B,D,E三点共线..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C:(x-1)2+y2=16,F(-1,0),M是圆C上的一个动点,线段MF的垂直平分线与线段MC相交于点P.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)记点P的轨迹为C1,A、B是直线x=-2上的两点,满足AF⊥BF,曲线C1与过A,B的两条切线(异于x=-2)交于点Q,求四边形AQBF面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,内角A,B,C所对的边分别为a,b,c,且2sin(A-B)=asinA-bsinB,a≠b,则c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U=R,集合M=$\left\{{x|{{({\frac{1}{3}})}^x}≤1}\right\},N=\left\{{x|-1<x<4}\right\}$,则M∩N=(  )
A.{x|-1<x≤0}B.{x|0≤x<4}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在棱长为4的正方体ABCD-A1B1C1D1中,E、F分别是AB、DD1的中点,点P是DD1上一点,且PB∥平面CEF,则四棱锥P-ABCD外接球的表面积为41π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系中,动圆经过点M(0,t-2),N(0,t+2),P(-2,0).其中t∈R.
(1)求动圆圆心E的轨迹方程;
(2)过点P作直线l交轨迹E于不同的两点A,B,直线OA与直线OB分别交直线x=2于两点C,D,记△ACD与△BCD的面积分别为S1,S2.求S1+S2的最小值.

查看答案和解析>>

同步练习册答案