精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系中,动圆经过点M(0,t-2),N(0,t+2),P(-2,0).其中t∈R.
(1)求动圆圆心E的轨迹方程;
(2)过点P作直线l交轨迹E于不同的两点A,B,直线OA与直线OB分别交直线x=2于两点C,D,记△ACD与△BCD的面积分别为S1,S2.求S1+S2的最小值.

分析 (1)设动圆的圆心为E(x,y),通过$|{PE}|=\sqrt{{{(\frac{{|{MN}|}}{2})}^2}+{x^2}}$,化简求解即可.
(2)当直线AB的斜率不存在时,AB⊥x轴,验证即可.当直线AB的斜率存在时,设直线AB的斜率为k,则k≠0,直线AB的方程是y=k(x+2),k≠0.设A(x1,y1),B(x2,y2),联立方程$\left\{{\begin{array}{l}{y=k(x+2)}\\{{y^2}=-4x}\end{array}}\right.$,通过判别式韦达定理化简,求出直线AC的方程为$y=\frac{y_1}{x_1}x$,直线AC的方程为$y=\frac{y_2}{x_2}x$,表示出三角形的面积,求出面积和,利用函数的单调性证明即可.

解答 解:(1)设动圆的圆心为E(x,y)
则$|{PE}|=\sqrt{{{(\frac{{|{MN}|}}{2})}^2}+{x^2}}$即:(x+2)2+y2=4+x2
∴y2=-4x
即:动圆圆心的轨迹E的方程为y2=-4x….(4分)
(2)当直线AB的斜率不存在时,AB⊥x轴,此时,$A(-2,2\sqrt{2}),B(-2,-2\sqrt{2})$
∴$|{AB}|=|{CD}|=4\sqrt{2}$∴${S_1}={S_2}=8\sqrt{2}$∴${S_1}+{S_2}=16\sqrt{2}$….(5分)
当直线AB的斜率存在时,设直线AB的斜率为k,则k≠0,
直线AB的方程是y=k(x+2),k≠0.
设A(x1,y1),B(x2,y2),联立方程$\left\{{\begin{array}{l}{y=k(x+2)}\\{{y^2}=-4x}\end{array}}\right.$,消去y,
得:k2(x+2)2+4x=0(k≠0),即:k2x2+4(k2+1)x+4k2=0(k≠0)
∴△=16(2k2+1)>0,${x_1}+{x_2}=-\frac{{4({k^2}+1)}}{k^2}$,x1x2=4….(7分)
由A(x1,y1),B(x2,y2)知,直线AC的方程为$y=\frac{y_1}{x_1}x$,直线AC的方程为$y=\frac{y_2}{x_2}x$,
∴$C(2,\frac{{2{y_1}}}{x_1}),D(2,\frac{{2y{\;}_2}}{x_2})$,∴$|{CD}|=2|{\frac{y_1}{x_1}-\frac{y_2}{x_2}}|=2\frac{{|{k({x_2}-{x_1})}|}}{{{x_1}{x_2}}}$,
∴${S_1}=\frac{1}{2}(2-{x_1})•|{CD}|$,${S_2}=\frac{1}{2}(2-{x_2})•|{CD}|$…..(9分)
∴${S_1}+{S_2}=\frac{1}{2}[4-({x_1}+{x_2})]•|{CD}|=4\sqrt{{{(2+\frac{1}{k^2})}^3}}(k≠0)$,
令$t=\frac{1}{k^2}$,则t>0,${S_1}+{S_2}=4{(2+t)^{\frac{3}{2}}},t>0$,
由于 函数$y=4{(2+t)^{\frac{3}{2}}}$在(0,+∞)上是增函数…(11分)
∴$y>16\sqrt{2}$∴${S_1}+{S_2}>16\sqrt{2}$,
综上所述,${S_1}+{S_2}≥16\sqrt{2}$
∴S1+S2的最小值为$16\sqrt{2}$…(12分)

点评 本题考查轨迹方程的求法,直线与抛物线的位置关系的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.(a+x)(1-x)4的展开式中x的奇数次幂项的系数之和为32,则a的值为(  )
A.-3B.3C.-5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x)的反函数为f-1(x),且对任意的x都有f(x)+f(6-x)=2,则f-1(1)=(  )
A.3B.2C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.分别在区间[1,6]和[1,4]内任取一个实数,依次记为x和y,则x<y的概率为(  )
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{2}{3}$D.$\frac{7}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率$\frac{\sqrt{2}}{2}$,且P(0,1)是椭圆C上的点,F是椭圆的右焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F且不与坐标轴平行的直线l与椭圆C交于A,B两点,线段AB的中点为M,O为坐标原点,直线OM的斜率kOM=-$\frac{1}{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若i为虚数单位,a、b∈R,且$\frac{a+2i}{i}$=b+i,则ab=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=x2+ax+2b在区间(0,1)和(1,2)内各有一个零点,则$\frac{a+b-3}{a-1}$的取值范围是(  )
A.($\frac{1}{4}$,1)B.($\frac{3}{4}$,$\frac{3}{2}$)C.($\frac{1}{4}$,$\frac{5}{4}$)D.($\frac{5}{4}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知F1,F2为椭圆ax2+y2=4a(0<a<1)的两个焦点,A(0,2),点P为椭圆上任意一点,则|PA|-|PF2|的最小值是(  )
A.aB.2aC.2$\sqrt{1-a}$-4D.2$\sqrt{2-a}$-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a>0,函数y=x3-ax在区间[1,+∞)上是单调函数,则a的最大值为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案