【题目】下列命题中正确的是( )
A.
是空间中的四点,若
不能构成空间基底,则
共面
B.已知
为空间的一个基底,若
,则
也是空间的基底
C.若直线
的方向向量为
,平面
的法向量为
,则直线![]()
D.若直线
的方向向量为
,平面
的法向量为
,则直线
与平面
所成角的正弦值为![]()
科目:高中数学 来源: 题型:
【题目】设椭圆
的左、右焦点分别为
,
,下顶点为
,
为坐标原点,点
到直线
的距离为
,
为等腰直角三角形.
(1)求椭圆
的标准方程;
(2)直线
与椭圆
交于
,
两点,若直线
与直线
的斜率之和为
,证明:直线
恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:
每周累积户外暴露时间(单位:小时) |
|
|
|
| 不少于28小时 |
近视人数 | 21 | 39 | 37 | 2 | 1 |
不近视人数 | 3 | 37 | 52 | 5 | 3 |
(1)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;
(2)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(2)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?
近视 | 不近视 | |
足够的户外暴露时间 | ||
不足够的户外暴露时间 |
附:![]()
P | 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点![]()
到定点
的距离比它到
轴的距离大
.
(1)求动点
的轨迹
的方程;
(2)设点
(
为常数),过点
作斜率分别为
的两条直线
与
,
交曲线
于
两点,
交曲线
于
两点,点
分别是线段
的中点,若
,求证:直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆两焦点坐标为
,
,椭圆
上的点到右焦点距离最小值为
.
(1)求椭圆
的方程;
(2)设斜率为-2的直线交曲线
于
、
两点,求线段
的中点
的轨迹方程;
(3)设经过点
的直线与曲线
相交所得的弦为线段
,求
的面积的最大值(
是坐标原点).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对应的散点图,并求得其回归方程为
,以下结论中不正确的为
![]()
![]()
A. 15名志愿者身高的极差小于臂展的极差
B. 15名志愿者身高和臂展成正相关关系,
C. 可估计身高为190厘米的人臂展大约为189.65厘米,
D. 身高相差10厘米的两人臂展都相差11.6厘米,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题:①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线a,b,c,若a与b共面,b与c共面,则a与c共面;④若直线l上有一点在平面α外,则l在平面α外.其中错误命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com