【题目】如图,已知四棱锥
的底面的菱形,
,点E是BC边的中点,AC和DE交于点O,PO
;
![]()
(1)求证:
;
(2)
求二面角P-AD-C的大小。
(3)在(2)的条件下,求异面直线PB与DE所成角的余弦值。
【答案】(1)见解析;(2)二面角
的大小为
;(3)异面直线
、
所成角的余弦值为
。
【解析】试题分析:
(1)由题意可证得
,结合射影定理可证得
;
(2)由题意找到二面角的平面角,结合三角函数值可得二面角
的大小为
.
(3)利用平移法结合余弦定理可得异面直线
、
所成角的余弦值为
.
试题解析:
(1)在菱形
中,连接
则
是等边三角形。
点
是边
的中点
![]()
平面![]()
是斜线
在底面
内的射影
![]()
(2)![]()
菱形
中, ![]()
![]()
又
平面
,
是
在平面
内的射影
![]()
为二面角
的平面角
在菱形
中,
,由(1)知,
等边三角形
点
是
边的中点,
与
互相平分
点
是
的重心
![]()
又
在等边三角形
中,
![]()
![]()
![]()
所以在
中, ![]()
![]()
二面角
的大小为
.
(3)取
中点
,连结
, ![]()
则![]()
与
所成角
与
所成角
连结![]()
平面
,
、
平面![]()
![]()
在
中, ![]()
![]()
在
中, ![]()
在
中, ![]()
由(2)可知, ![]()
设
与
所成的角为![]()
则![]()
所以异面直线
、
所成角的余弦值为![]()
科目:高中数学 来源: 题型:
【题目】若无穷数列
满足:只要
,必有
,则称
具有性质
.
(1)若
具有性质
,且
,
,求
;
(2)若无穷数列
是等差数列,无穷数列
是公比为正数的等比数列,
,
,
判断
是否具有性质
,并说明理由;
(3)设
是无穷数列,已知
.求证:“对任意
都具有性质
”的充要条件为“
是常数列”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C:
(a>b>0)的左、右焦点分别为F1,F2,P为椭圆上一点(在x轴上方),连结PF1并延长交椭圆于另一点Q,设
=λ
.
(1)若点P的坐标为(1,
),且△PQF2的周长为8,求椭圆C的方程;
(2)若PF2垂直于x轴,且椭圆C的离心率e∈[
,
],求实数λ的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥A-BCD中,△ABC是等腰直角三角形,且AC⊥BC,BC=2,AD⊥平面BCD,AD=1.
![]()
(1)求证:平面ABC⊥平面ACD;
(2)若E为AB中点,求点A到平面CED的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是定义在D上的函数,若对D中的任意两数
),恒有
,则称
为定义在D上的C函数.
(1)试判断函数
是否为定义域上的C函数,并说明理由;
(2)若函数
是R上的奇函数,试证明
不是R上的C函数;
(3)设
是定义在D上的函数,若对任何实数
以及D中的任意两数
),恒有
,则称
为定义在D上的π函数. 已知
是R上的π函数,m是给定的正整数,设
,且
,记
. 对于满足条件的任意函数
,试求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
在圆
上,
的坐标分别为
,
,线段
的垂直平分线交线段
于点![]()
(1)求点
的轨迹
的方程;
(2)设圆
与点
的轨迹
交于不同的四个点
,求四边形
的面积的最大值及相应的四个点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(I)求棱锥C-ADE的体积;
(II)求证:平面ACE⊥平面CDE;
(III)在线段DE上是否存在一点F,使AF∥平面BCE?若存在,求出
的值;若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子里有编号为
的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号.
甲说:“我无法确定.”
乙说:“我也无法确定.”
甲听完乙的回答以后,甲又说:“我可以确定了.”
根据以上信息, 你可以推断出抽取的两球中
A. 一定有3号球 B. 一定没有3号球 C. 可能有5号球 D. 可能有6号球
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com