如图,椭圆
的左顶点为
,
是椭圆
上异于点
的任意一点,点
与点
关于点
对称.![]()
(1)若点
的坐标为
,求
的值;
(2)若椭圆
上存在点
,使得
,求
的取值范围.
科目:高中数学 来源: 题型:解答题
已知A(-5,0),B(5,0),动点P满足|
|,
|
|,8成等差数列.
(1)求P点的轨迹方程;
(2)对于x轴上的点M,若满足|
|·|
|=
,则称点M为点P对应的“比例点”.问:对任意一个确定的点P,它总能对应几个“比例点”?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
过点
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
且斜率为
(
)的直线
与椭圆
相交于
两点,直线
、
分别交直线
于
、
两点,线段
的中点为
.记直线
的斜率为
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知△ABC中, 点A,B的坐标分别为A(-
,0),B(
,0)点C在x轴上方.
(Ⅰ)若点C坐标为(
,1),求以A,B为焦点且经过点C的椭圆的方程:
(Ⅱ)过点P(m,0)作倾斜角为
的直线l交(1)中曲线于M,N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知抛物线
的焦点为F
过点
的直线交抛物线于A
,B
两点,直线AF,BF分别与抛物线交于点M,N ![]()
(1)求
的值;
(2)记直线MN的斜率为
,直线AB的斜率为
证明:
为定值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的中心在原点,焦点在
轴上,焦距为
,且经过点
,直线
交椭圆于不同的两点A,B.
(1)求
的取值范围;,
(2)若直线
不经过点
,求证:直线
的斜率互为相反数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,椭圆C过点
,两个焦点为
.
(1)求椭圆C的方程;
(2)
是椭圆C上的两个动点,如果直线
的斜率与
的斜率互为相反数,证明直线
的斜率为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知椭圆
的左焦点为
,且椭圆
的离心率
.
(1)求椭圆
的方程;
(2)设椭圆
的上下顶点分别为
,
是椭圆
上异于
的任一点,直线
分别交
轴于点
,证明:
为定值,并求出该定值;
(3)在椭圆
上,是否存在点
,使得直线
与圆
相交于不同的两点
,且
的面积最大?若存在,求出点
的坐标及对应的
的面积;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com