如图,已知抛物线
焦点为
,直线
经过点
且与抛物线
相交于
,
两点 ![]()
(Ⅰ)若线段
的中点在直线
上,求直线
的方程;
(Ⅱ)若线段
,求直线
的方程
(Ⅰ)
;(Ⅱ)
解析试题分析:(Ⅰ)根据已知条件设出未知的点的坐标和斜率,根据两点间的斜率公式和中点坐标公式找等价关系,求出直线
的斜率,由已知得的
根据斜截式求出直线方程; (Ⅱ)设出直线
的方程为
,这样避免讨论斜率的存在问题,与抛物线的方程联立方程组,得到根与系数的关系,根据直线与抛物线相交的交点弦的长来求参数的值
试题解析:解:(Ⅰ)由已知得交点坐标为
, 2分
设直线
的斜率为
,
,
,
中点
则
,
,
所以
,又
,所以
4分
故直线
的方程是:
6分
(Ⅱ)设直线
的方程为
, 7分
与抛物线方程联立得
,
消元得
, 9分
所以有
,
,
11分
所以有
,解得
, 13分
所以直线
的方程是:
,即
15分
考点:1、直线的方程;2、直线与圆锥曲线的关系
科目:高中数学 来源: 题型:解答题
在直角坐标系
上取两个定点
,再取两个动点
且
.
(I)求直线
与
交点的轨迹
的方程;
(II)已知
,设直线:
与(I)中的轨迹
交于
、
两点,直线
、
的倾斜角分别为
且
,求证:直线过定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
知椭圆
的离心率为
,定点
,椭圆短轴的端点是
,且
.
(1)求椭圆
的方程;
(2)设过点
且斜率不为0的直线交椭圆
于
两点.试问
轴上是否存在异于
的定点
,使
平分
?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段,已知跳水板
长为2m,跳水板距水面
的高
为3m,
=5m,
=6m,为安全和空中姿态优美,训练时跳水曲线应在离起跳点
m(
)时达到距水面最大高度4m,规定:以
为横轴,
为纵轴建立直角坐标系.![]()
(1)当
=1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域
内入水时才能达到压水花的训练要求,求达到压水花的训练要求时
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知点
,
,
为动点,且直线
与直线
的斜率之积为
.
(1)求动点
的轨迹
的方程;
(2)设过点
的直线
与曲线
相交于不同的两点
,
.若点
在
轴上,且
,求点
的纵坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆
的左焦点为
,离心率为
,过点
且与
轴垂直的直线被椭圆截得的线段长为
.
(1) 求椭圆方程.
(2) 过点
的直线
与椭圆交于不同的两点
,当
面积最大时,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
为椭圆
的左,右焦点,
为椭圆上的动点,且
的最大值为1,最小值为-2.
(I)求椭圆
的方程;
(II)过点
作不与
轴垂直的直线
交该椭圆于
两点,
为椭圆的左顶点。试判断
的大小是否为定值,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com