精英家教网 > 高中数学 > 题目详情
已知椭圆
x22
+y2=1
及直线l:y=x+m.
(1)当直线l与椭圆有公共点时,求实数m的取值范围;
(2)若直线l过椭圆右焦点,并与椭圆交于A、B两点,求弦AB之长.
分析:(1)当直线l与椭圆有公共点时,两方方程联立,消去一个未知数,得到的关于另一个未知数的一元二次方程中,△≥0,即可得到m的范围.
(2)先求出过椭圆右焦点的直线方程,在于椭圆方程联立,消去y,得到关于x的一元二次方程,求两根之和,两根之积,再利用弦长公式求弦AB之长.
解答:解:(1)由  
y=x+m
x2
2
+y2=1
消y得,3x2+4mx+2m2-2=0
由于直线l与椭圆有公共点∴△=16m2-12(2m2-2)≥0,得m2≤3
故-
3
≤m≤
3

(2)设A(x1,y1),B(x2,y2),直线l过椭圆右焦点(1,0)
此时直线l:y=x-1代入椭圆方程,得3x2-4x=0
故x=0或x=
4
3
,,有|AB|=
12+12
|x1-x2|=
4
3
2
点评:本题考查了直线与椭圆位置关系的判断,以及弦长公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x22
+y2=1
的右准线l与x轴相交于点E,过椭圆右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,且BC∥x轴?求证直线AC经过线段EF的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x22
+y2=1
的左焦点为F,O为坐标原点.
(I)求过点O、F,并且与椭圆的左准线l相切的圆的方程;
(II)设过点F的直线交椭圆于A、B两点,并且线段AB的中点在直线x+y=0上,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
2
+y2=1
的左焦点为F,O为坐标原点.过点F的直线l交椭圆于A、B两点.
(1)若直线l的倾斜角α=
π
4
,求|AB|;
(2)求弦AB的中点M的轨迹方程;
(3)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,
线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x22
+y2=1的左、右焦点为F1、F2,上顶点为A,直线AF1交椭圆于B.如图所示沿x轴折起,使得平面AF1F2⊥平面BF1F2.点O为坐标原点.
( I ) 求三棱锥A-F1F2B的体积;
(Ⅱ)图2中线段BF2上是否存在点M,使得AM⊥OB,若存在,请在图1中指出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•钟祥市模拟)如图,已知椭圆
x2
2
+y2=1
内有一点M,过M作两条动直线AC、BD分别交椭圆于A、C和B、D两点,若|
AB
|2+|
CD
|2=|
BC
|2+|
AD
|2


(1)证明:AC⊥BD;
(2)若M点恰好为椭圆中心O
(i)四边形ABCD是否存在内切圆?若存在,求其内切圆方程;若不存在,请说明理由.
(ii)求弦AB长的最小值.

查看答案和解析>>

同步练习册答案