【题目】设函数
(a,
);
(1)若
,求证:函数
的图像必过定点;
(2)若
,证明:
在区间
上的最大值
;
(3)存在实数a,使得当
时,
恒成立,求实数b的最大值;
【答案】(1)证明见解析;(2) 证明见解析;(3)5;
【解析】
(1)由题可得
代入解析式中,整理后即可得证;
(2)由题先将
代入解析式中,由对称轴与区间的位置,分别讨论
,
,
的情况,进而求证即可;
(3)由对称轴与区间的位置,分别讨论
,
,
的情况,利用不等式的传递性,进而求解即可
(1)证明:由
,则
,所以
,
则当
时,无论
为何值,都有
,
所以函数
的图像必过定点![]()
(2)证明:因为
,所以
,
所以
,
因为
,
,
令
,则
,
所以当
时,
;当
时,
,
当
,即
时,
在
上为增函数,则
,
此时
在
的最大值为
;
当
,即
时,
在
上为减函数,所以
,
此时
在
的最大值
;
当
,即
时,
在
上单调递减,在
上单调递增,
所以
的最小值为
;
①当
,即
时,
在
上的最大值为
,
因为
,设
,
所以
,
此时
在
的最大值
;
②当
,即
时,
在
上的最大值为
,
因为
,
,
所以此时
在
的最大值
;
综上,
,故![]()
(3)当
,即
时,
在
上单调递增,
所以
,由
可得
,则
,解得
;
当
,即
时,
在在
上单调递减,
所以
,由
可得
,则
,解集为
;
当
,即
时,
在
单调递减,在
单调递增,
所以
,
由
和
可得
,即
,则
,
所以
,与
联立可得
,
即
,解得
,
当
时,由
可得
,此时满足所列不等式,
综上所述,
的最大值为5,此时![]()
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为
;
当P是原点时,定义P的“伴随点“为它自身,平面曲线C上所有点的“伴随点”所构成的曲线
定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点
,则点
的“伴随点”是点A
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”
关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是_____________(写出所有真命题的序列).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四边形
的直角梯形,
,
,
,
为线段
的中点,
平面
,
,
为线段
上一点(
不与端点重合).
(Ⅰ)若
,
(i)求证:
平面
;
(ii)求直线
与平面
所成的角的大小;
(Ⅱ)否存在实数
满足
,使得平面
与平面
所成的锐角为
,若存在,确定
的值,若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“微信运动”已经成为当下最热门的健身方式,小李的微信朋友圈内也有大量的好友参加了“微信运动.”他随机的选取了其中30人,记录了他们某一天走路的步数,将数据整理如下:
步数 |
|
|
|
人数 | 5 | 13 | 12 |
(1)若采用样本估计总体的方式,试估计小李所有微信好友中每日走路步数超过5000步的概率;
(2)已知某人一天的走路步数若超过8000步则他被系统评定为“积极型”,否则评定为“懈怠型”.将这30人按照“积极型”、“懈怠型”分成两层,进行分层抽样,从中抽取5人,将这5人中属于“积极型”的人依次记为
,属于“懈怠型”的人依次记为
,现再从这5人中随机抽取2人接受问卷调查.
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设M为事件“抽取的2人来自不同的类型”,求事件M发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):
A班 | 6 6.5 7 7.5 8 |
B班 | 6 7 8 9 10 11 12 |
C班 | 3 4.5 6 7.5 9 10.5 12 13.5 |
(Ⅰ)试估计C班的学生人数;
(Ⅱ)从A班和C班抽出的学生中,各随机选取一人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;
(Ⅲ)再从A,B,C三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为
,表格中数据的平均数记为
,试判断
和
的大小.(结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的右焦点为
,点
分别是椭圆
的上、下顶点,点
是直线
上的一个动点(与
轴交点除外),直线
交椭圆于另一点
.
![]()
(1)当直线
过椭圆的右焦点
时,求
的面积;
(2)记直线
的斜率分别为
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1-50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮测试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
甲抽取的样本数据
编号 | 2 | 7 | 12 | 17 | 22 | 27 | 32 | 37 | 42 | 47 |
性别 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 |
投篮成 绩 | 90 | 60 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 60 |
乙抽取的样本数据
编号 | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 |
性别 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 |
投篮成 绩 | 95 | 85 | 85 | 70 | 70 | 80 | 60 | 65 | 70 | 60 |
(Ⅰ)在乙抽取的样本中任取3人,记投篮优秀的学生人数为
,求
的分布列和数学期望.
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
优秀 | 非优秀 | 合计 | |
男 | |||
女 | |||
合计 | 10 |
(Ⅲ)判断甲、乙各用何种抽样方法,并根据(Ⅱ)的结论判断哪种抽样方法更优?说明理由.
下面的临界值表供参考:
| 0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(参考公式:
,其中
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com