【题目】已知
,
满足约束条件
,若目标函数
的最小值为-5,则
的最大值为( )
A. 2B. 3
C. 4D. 5
科目:高中数学 来源: 题型:
【题目】已知函数
的周期为
,图象的一个对称中心为
.将函数
图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得到的图象向右平移
个单位长度后得到函数
的图象.
(1)求函数
与
的解析式.
(2)定义:当函数取得最值时,函数图象上对应的点称为函数的最值点,如果函数
的图象上至少有一个最大值点和一个最小值点在圆
的内部或圆周上,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,侧面
⊥底面
,底面
为直角梯形,
//
,
,
,
,
为
的中点.
![]()
(Ⅰ)求证:PA//平面BEF;
(Ⅱ)若PC与AB所成角为
,求
的长;
(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
经过点
离心率
.
(Ⅰ)求椭圆的方程;
(Ⅱ)经过椭圆左焦点
的直线(不经过点
且不与
轴重合)与椭圆交于
两点,与直线
:
交于点
,记直线
的斜率分别为
.则是否存在常数
,使得向量
共线?若存在求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
(a,
);
(1)若
,求证:函数
的图像必过定点;
(2)若
,证明:
在区间
上的最大值
;
(3)存在实数a,使得当
时,
恒成立,求实数b的最大值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,第
行的数字之和为______;去除所有为1的项,依此构成数列2,3,3,4,6,4,5,10,10,5,则此数列的前46项和为______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,椭圆上的点到右焦点
的距离的最大值为3.
(1)求椭圆
的方程;
(2)若过椭圆
的右焦点
作倾斜角不为零的直线
与椭圆
交于两点
,设线段
的垂直平分线在
轴上的截距为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了解社区群众体育活动的开展情况,拟采用分层抽样的方法从A,B,C三个行政区抽出6个社区进行调查.已知A,B,C行政区中分别有12,18,6个社区.
(1)求从A,B,C三个行政区中分别抽取的社区个数;
(2)若从抽得的6个社区中随机的抽取2个进行调查结果的对比,求抽取的2个社区中至少有一个来自A行政区的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量方法,具体如下;第一阶梯,每户居民每月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民用水量超过12吨,超过部分的价格为8元/吨,为了了解全是居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照
(全市居民月用水量均不超过16吨)分成8组,制成了如图1所示的频率分布直方图.
![]()
![]()
(Ⅰ)求频率分布直方图中字母
的值,并求该组的频率;
(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数
的值(保留两位小数);
(Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费
(元)与月份
的散点图,其拟合的线性回归方程是
若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com