【题目】如图,矩形
中,
为
的中点,将
沿直线
翻折成
,连结
,
为
的中点,则在翻折过程中,下列说法中所有正确的序号是_______.
①存在某个位置,使得
;
②翻折过程中,
的长是定值;
③若
,则
;
④若
,当三棱锥
的体积最大时,三棱锥
的外接球的表面积是
.
![]()
【答案】②④
【解析】
对于①,取AD中点E,连接EC交MD与F,可得到EN⊥NF,又EN⊥CN,且三线NE,NF,NC共面共点,不可能,
对于②,可得由∠NEC=∠MAB1(定值),NE
AB1(定值),AM=EC(定值),由余弦定理可得NC是定值.
对于③,取AM中点O,连接B1O,DO,易得AM⊥面ODB1,即可得OD⊥AM,从而AD=MD,显然不成立.
对于④:当平面B1AM⊥平面AMD时,三棱锥B1﹣AMD的体积最大,可得球半径为1,表面积是4π.
对于①:如图1,取AD中点E,连接EC交MD与F,则NE∥AB1,NF∥MB1,
如果CN⊥AB1,可得到EN⊥NF,又EN⊥CN,且三线NE,NF,NC共面共点,不可能,故①错.
![]()
![]()
对于②:如图1,可得由∠NEC=∠MAB1(定值),NE
AB1(定值),AM=EC(定值),
由余弦定理可得NC2=NE2+EC2﹣2NEECcos∠NEC,所以NC是定值,故②正确.
对于③:如图2,取AM中点O,连接B1O,DO,易得AM⊥面ODB1,即可得OD⊥AM,从而AD=MD,显然不成立,可得③不正确.
对于④:当平面B1AM⊥平面AMD时,三棱锥B1﹣AMD的体积最大,易得AD中点H就是三棱锥B1﹣AMD的外接球的球心,球半径为1,表面积是4π.故④正确.
故答案为:②④.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且椭圆上的点到焦点的最长距离为
.
(1)求椭圆C的方程;
(2)过点P(0,2)的直线l(不过原点O)与椭圆C交于两点A、B,M为线段AB的中点.
(ⅰ)证明:直线OM与l的斜率乘积为定值;
(ⅱ)求△OAB面积的最大值及此时l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,以
轴正半轴为极轴,建立极坐标系(
),点
为曲线
上的动点,点
在线段
的延长线上,且满足
,点
的轨迹为
。
(Ⅰ)求
的极坐标方程;
(Ⅱ)设点
的极坐标为
,求
面积的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的焦点到短轴的端点的距离为
,离心率为
.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
两点,过点
作平行于
轴的直线
,交直线
于点
,求证:直线
恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点
为圆
:
上一动点,过点
分别作
轴,
轴的垂线,垂足分别为
,
,连接
延长至点
,使得
,点
的轨迹记为曲线
.
![]()
(1)求曲线
的方程;
(2)若点
,
分别位于
轴与
轴的正半轴上,直线
与曲线
相交于
,
两点,试问在曲线
上是否存在点
,使得四边形
为平行四边形,若存在,求出直线
方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中所有正确的序号是_________
①两直线的倾斜角相等,则斜率必相等;
②若动点
到定点
和定直线
的距离相等,则动点
的轨迹是抛物线;
③已知
、
是椭圆
的两个焦点,过点
的直线与椭圆交于
、
两点,则
的周长为
;
④曲线的参数方程为
为参数
,则它表示双曲线且渐近线方程为
;
⑤已知正方形
,则以
、
为焦点,且过
、
两点的椭圆的离心率为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆
过定点
,并且内切于定圆
.
(1)求动圆圆心
的轨迹方程;
(2)若
上存在两个点
,
,(1)中曲线上有两个点
,
,并且
,
,
三点共线,
,
,
三点共线,
,求四边形
的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中学为研究学生的身体素质与体育锻炼时间的关系,对该校200名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 |
|
|
|
|
|
|
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均体育锻炼时间在
的学生评价为“锻炼达标”.
(1)请根据上述表格中的统计数据填写下面的
列联表;
锻炼不达标 | 锻炼达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
并通过计算判断,是否能在犯错误的概率不超过0.025的前提下认为“锻炼达标”与性别有关?
(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出10人,进行体育锻炼体会交流,
(i)求这10人中,男生、女生各有多少人?
(ii)从参加体会交流的10人中,随机选出2人作重点发言,记这2人中女生的人数为
,求
的分布列和数学期望.
参考公式:
,其中
.
临界值表
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com