【题目】已知数列{an}的前n项和为Sn,且a1=1,an+1=
Sn(n=1,2,3,…).
(1)求数列{an}的通项公式;
(2)当bn=
(3an+1)时,求证:数列
的前n项和Tn=
.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=
,O为AC与BD的交点,E为棱PB上一点. ![]()
(Ⅰ)证明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.
月收入(单位百元) | [15,25 | [25,35 | [35,45 | [45,55 | [55,65 | [65,75 |
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上统计数据求下面2
2列联表中的
的值,并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;
月收入低于55百元的人数 | 月收入不低于55百元的人数 | 合计 | |
赞成 | a | b | |
不赞成 | c | d | |
合计 | 50 |
(2)若对在[55,65)内的被调查者中随机选取两人进行追踪调查,记选中的2人中不赞成“楼市限购令”的人数为
,求
的概率.
附:
,![]()
| 0.10 | 0.05 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
=1的左顶点为A(﹣3,0),左焦点恰为圆x2+2x+y2+m=0(m∈R)的圆心M.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点A且与圆M相切于点B的直线,交椭圆C于点P,P与椭圆C右焦点的连线交椭圆于Q,若三点B,M,Q共线,求实数m的值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=sin(x+
)图象上各点的横坐标缩短到原来的
倍(纵坐标不变),再把得到的图象向右平移
个单位,得到的新图象的函数解析式为g(x)= , g(x)的单调递减区间是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且3cosBcosC+1=3sinBsinC+cos2A.
(1)求角A的大小;
(2)若
,求b+c的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点F,C上一点
到焦点的距离为5.
(1)求C的方程;
(2)过F作直线l,交C于A,B两点,若直线AB中点的纵坐标为
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣mx(m∈R).
(1)若曲线y=f(x)过点P(1,﹣1),求曲线y=f(x)在点P处的切线方程;
(2)求函数f(x)在区间[1,e]上的最大值;
(3)若函数f(x)有两个不同的零点x1 , x2 , 求证:x1x2>e2 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com