精英家教网 > 高中数学 > 题目详情
11.点P在曲线$\frac{x^2}{2}-{y^2}$=1上,点Q在曲线x2+(y-3)2=4上,线段PQ的中点为M,O是坐标原点,则线段OM长的最小值是$\sqrt{2}$-1.

分析 设设Q(x1,y1),P(x2,y2),P1(-x2,-y2),则|OM|=$\frac{1}{2}$|P1Q|,求出P1到圆心N(0,3)的最小距离,即可得出|P1Q|的最小距离,从而得出|OM|的最小值.

解答 解:设Q(x1,y1),P(x2,y2),则M($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{y}_{1}+{y}_{2}}{2}$),
∴|OM|=$\frac{1}{2}$$\sqrt{({x}_{1}+{x}_{2})^{2}+({y}_{1}+{y}_{2})^{2}}$,
设P1(-x2,-y2),则P1在双曲线上,∴x12=2y22+11,
∴|P1Q|=$\sqrt{({x}_{1}+{x}_{2})^{2}+({y}_{1}+{y}_{2})^{2}}$,|OM|=$\frac{1}{2}$|P1Q|.
设曲线x2+(y-3)2=4的圆心为N(0,3),
则|P1Q|min=|P1N|min-2,
∵|P1N|=$\sqrt{{{x}_{2}}^{2}+(3+{y}_{2})^{2}}$=$\sqrt{3{{y}_{2}}^{2}+6{y}_{2}+11}$=$\sqrt{3({y}_{2}+1)^{2}+8}$,
∴当y2=-1时,|P1N|min=2$\sqrt{2}$,
∴|P1Q|min=2$\sqrt{2}$-2,
∴|OM|min=$\sqrt{2}-1$.
故答案为:$\sqrt{2}-1$.

点评 本题考查了双曲线的性质,距离公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=2x+a,若函数f(x)的图象过点(3,18),则a的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{{e}^{x}}{x}$.
求(1)函数f(x)的单调区间;
(2)当x>0时,求证:ex≥ex.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各组函数f(x)与g(x)相同的是(  )
A.f(x)=1,g(x)=x0B.f(x)=x2,g(x)=(x+1)2
C.f(x)=x,g(x)=elnxD.f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,}&{x≥0}\\{-x,}&{x<0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1+alnx}{x}$(a>0).
(Ⅰ)若函数f(x)在x=1处取得极值,且函数y=f(x)图象上一点的切线l过原点,求l的方程;
(Ⅱ)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率e=$\frac{{\sqrt{3}}}{2}$,左、右焦点分别为F1、F2,A是椭圆在第一象限上的一个动点,圆C与F1A的延长线,F1F2的延长线以及线段AF2都相切,M(2,0)为一个切点.
(1)求椭圆方程;
(2)设$N({\frac{{\sqrt{3}}}{2},0})$,过F2且不垂直于坐标轴的动点直线l交椭圆于P,Q两点,若以NP,NQ为邻边的平行四边形是菱形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,在△ABC中,∠BAC=60°,AB=2,AC=1,D是BC边上一点,且$\overrightarrow{CD}$=2$\overrightarrow{DB}$,则$\overrightarrow{AD}$•$\overrightarrow{BC}$ 的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知关于空间两条不同直线m,n,两个不同平面α,β,有下列四个命题:①若m∥α且n∥α,则m∥n;②若m⊥β且m⊥n,则n∥β;③若m⊥α且m∥β,则α⊥β;④若n?α且m不垂直于α,则m不垂直于n.其中正确命题的序号为③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若复数$\frac{a+i}{1+2i}({a∈R})$为纯虚数,其中i为虚数单位,则a=(  )
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

查看答案和解析>>

同步练习册答案