精英家教网 > 高中数学 > 题目详情
19.下列各组函数f(x)与g(x)相同的是(  )
A.f(x)=1,g(x)=x0B.f(x)=x2,g(x)=(x+1)2
C.f(x)=x,g(x)=elnxD.f(x)=|x|,g(x)=$\left\{\begin{array}{l}{x,}&{x≥0}\\{-x,}&{x<0}\end{array}\right.$

分析 分别判断两个函数的定义域和对应法则是否一致,否则不是同一函数.

解答 解:A.f(x)的定义域为R,而g(x)的定义域为(-∞,0)∪(0,+∞),所以定义域不同,所以函数f(x)与g(x)不相同.
B.两个函数的对应法则不相同,所以函数f(x)与g(x)不相同.
C.f(x)的定义域为R,而g(x)的定义域为(0,+∞),所以定义域不同,所以C函数f(x)与g(x)不相同.
D.f(x)=$\left\{\begin{array}{l}{x,}&{x≥0}\\{-x,}&{x<0}\end{array}\right.$,两个函数的定义域和对应法则相同,所以函数f(x)与g(x)相同.
故选D.

点评 本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知0<x≤3,则$y=x+\frac{16}{x}$的最小值为(  )
A.$\frac{25}{3}$B.16C.20D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆的离心率e=$\frac{\sqrt{2}}{2}$,左、右焦点分别为F1、F2,定点,P(2,$\sqrt{3}$),点F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l:y=kx+m与椭圆C交于M、N两点,直线F2M、F2N的倾斜角分别为α、β且α+β=π,求证:直线l过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.中国古代数学著作《九章算术》中记载了公元前344年商鞅督造一种标准量器--商鞅铜方升,一个爱好者根据该标准量器制作了一个几何体模型,该几何体的三视图如图所示(单位:寸),若几何体体积为13.5(立方寸),(π取3),则图中x的为(  )
A.2.4B.1.8C.1.6D.1.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,角A,B,C的对边分别为a,b,c.已知A=45°,cosB=$\frac{4}{5}$.
(1)求cosC的值;
(2)若BC=20,D为AB的中点,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$cos(3π-α)=\frac{4}{5}$,则cos(π+α)的值是(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.$\frac{3}{5}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点P在曲线$\frac{x^2}{2}-{y^2}$=1上,点Q在曲线x2+(y-3)2=4上,线段PQ的中点为M,O是坐标原点,则线段OM长的最小值是$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=$\left\{\begin{array}{l}{-|lnx|,x>0}\\{{x}^{2}+2x-1,x≤0}\end{array}\right.$,若f(a)=f(b)=f(c)=f(d),其中a,b,c,d互不相等,则对于命题p:abcd∈(0,1)和命题q:a+b+c+d∈[e+e-1-2,e2+e-2-2)真假的判断,正确的是(  )
A.p假q真B.p假q假C.p真q真D.p真q假

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=|sinx|+|sin(x+$\frac{π}{3}$)|的值域为[$\frac{\sqrt{3}}{2}$,$\sqrt{3}$].

查看答案和解析>>

同步练习册答案