【题目】定义:如果数列
的任意连续三项均能构成一个三角形的三边长,则称
为“三角形”数列,对于“三角形”数列
,如果函数
使得
仍为一个“三角形”数列,则称
是数列
的“保三角形函数”
.
(1)已知
是首项为2,公差为1的等差数列,若
是数列
的“保三角形函数”,求k的取值范围;
(2)已知数列
的首项为2010,
是数列
的前n项和,且满足
,证明
是“三角形”数列.
科目:高中数学 来源: 题型:
【题目】如图,设椭圆
的左、右焦点分别为
,点
在椭圆上,
的面积为
.
![]()
(1)求椭圆的标准方程;
(2)设圆心在
轴上的圆与椭圆在
轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.
(Ⅰ) 求动圆圆心的轨迹C的方程;
(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是
的角平分线, 证明直线l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,过点
的直线
的参数方程为
(
为参数),直线
与曲线
相交于
两点.
(Ⅰ)写出曲线
的直角坐标方程和直线
的普通方程;
(Ⅱ)若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年11月6日-11日,第十二届中国国际航空航天博览会在珠海举行。在航展期间,从珠海市区开车前往航展地有甲、乙两条路线可走,已知每辆车走路线甲堵车的概率为
,走路线乙堵车的概率为p,若现在有A,B两辆汽车走路线甲,有一辆汽车C走路线乙,且这三辆车是否堵车相互之间没有影响。
(1)若这三辆汽车中恰有一辆汽车被堵的概率为
,求p的值。
(2)在(1)的条件下,求这三辆汽车中被堵车辆的辆数X的分布列和数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有2008名学生参加大型公益活动.若有两名学生互相认识,则将这两名学生看作一个合作小组.
(1)求合作小组数目的最小值
,使得无论学生认识的情况如何,都存在三名学生,他们两两都在一个合作小组;
(2)若合作小组数目为
,证明:存在四名学生
、
、
、
,使得
和
、
和
、
和
、
和
分别为一个合作小组.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0,
)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年9~12月某市邮政快递业务量完成件数较2017年9~12月同比增长25%,该市2017年9~12月邮政快递业务量柱形图及2018年9~12月邮政快递业务量结构扇形图如图所示,根据统计图,给出下列结论:
![]()
![]()
①2018年9~12月,该市邮政快递业务量完成件数约1500万件;
②2018年9~12月,该市邮政快递同城业务量完成件数与2017年9~12月相比有所减少;
③2018年9~12月,该市邮政快递国际及港澳台业务量同比增长超过75%,其中正确结论的个数为( )
A. 3
B. 2
C. 1
D. 0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com