【题目】已知函数
,数列{an}满足
.
(1)求证:数列{
}是等差数列;
(2)求数列{an}的通项公式;
(3)记Sn=a1a2+a2a3+…+anan+1 , 求Sn .
【答案】
(1)证明:∵函数
,数列{an}满足
,
∴
,
∴
=3+
,
∴
=3,
=1,
∴数列{
}是首项为1,公差为3的等差数列
(2)解:∵数列{
}是首项为1,公差为3的等差数列,
∴
=1+(n﹣1)×3=3n﹣2,
∴an=
.
(3)解:∵anan+1=
=
(
),
∴Sn=a1a2+a2a3+…+anan+1
=
(1﹣
+
+
+…+
)
= ![]()
=
.
【解析】(1)由已知利用函数性质得
,从而
=3+
,由此能证明数列{
}是首项为1,公差为3的等差数列.(2)由
=1+(n﹣1)×3=3n﹣2,能求出an . (3)anan+1=
=
(
),利用裂项求和法能求出Sn .
【考点精析】根据题目的已知条件,利用数列的前n项和和数列的通项公式的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系
;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
sin2x+cos2x﹣m在[0,
]上有两个零点,则实数m的取值范围是( )
A.(﹣1,2)
B.[1,2)
C.(﹣1,2]
D.[1,2]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
=1(a>b>0)的左、右焦点分别为F1 , F2 , 且F1 , F2与短轴的一个顶点Q构成一个等腰直角三角形,点P(
,
)在椭圆C上.
(I)求椭圆C的标准方程;
(Ⅱ)过F2作互相垂直的两直线AB,CD分别交椭圆于点A,B,C,D,且M,N分别是弦AB,CD的中点,求△MNF2面积的最大值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】西部大开发给中国西部带来了绿色,人与环境日趋和谐,群众生活条件和各项基础设施得到了极大的改善,西部某地区2009年至2015年农村居民家庭人均纯收入
(单位:千元)的数据如下表:
![]()
(Ⅰ)求
关于
的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,
(其中
,
为样本平均值).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的奇函数f(x)满足f(log2x)=
.
(1)求函数f(x)的解析式;
(2)判断并证明f(x)在定义域 R的单调性;
(3)若对任意的t∈R,不等式f(t2﹣2t)+f(3t2﹣k)<0恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2﹣2x+6y=0,则圆心P及半径r分别为( )
A.圆心P(1,3),半径r=10
B.圆心P(1,3),半径 ![]()
C.圆心P(1,﹣3),半径r=10
D.圆心P(1,﹣3),半径
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.若AC=BD=a,且AC与BD所成的角为60°,则四边形EFGH的面积为( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:mx﹣y=0,l2:x+my﹣m﹣2=0.
(1)求证:对m∈R,l1与l2的交点P在一个定圆上;
(2)若l1与定圆的另一个交点为P1 , l2与定圆的另一个交点为P2 , 求当m在实数范围内取值时,△PP1P2的面积的最大值及对应的m.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中直线
的倾斜角为
,且经过点
,以坐标系
的原点为极点,
轴的非负半轴为极轴,建立极坐标系
,曲线
的极坐标方程为
,直线
与曲线
相交于
两点,过点
的直线
与曲线
相交于
两点,且
.
(1)平面直角坐标系中,求直线
的一般方程和曲线
的标准方程;
(2)求证:
为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com