【题目】已知三棱柱
,平面
截此三棱柱,分别与
,
,
,
交于点
,
,
,
,且直线
平面
.有下列三个命题:①四边形
是平行四边形;②平面
平面
;③若三棱柱
是直棱柱,则平面
平面
.其中正确的命题为( )
A. ①② B. ①③ C. ①②③ D. ②③
科目:高中数学 来源: 题型:
【题目】已知圆
与直线
,动直线
过定点
.
![]()
(1)若直线
与圆
相切,求直线
的方程;
(2)若直线
与圆
相交于
两点,点
是
的中点,直线
与直线
相交于点
. 探索
是否为定值,若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《中国青年报》2015年5月14日报道:“伴随着网络技术的蓬勃发展,国内电子商务获得了爆炸式的增长,2014年网上零售额达到了27898亿元,占社会消费品零售总额的10%,也就是说,人们日常消费中10%是通过网购,而且还以年30%,40%的速度增长."假设2014-2020年网上零售额每年的增长率均为35%,试算出2015-2020年每年的网上零售额(精确到1亿元).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场在促销期间规定:商场内所有商品按标价的
出售,当顾客在商场内消费一定金额后,按如下方案获得相应金额的奖券:
消费金额(元)的范围 |
|
|
|
| … |
获得奖券的金额(元) | 30 | 60 | 100 | 130 | … |
根据上述促销方法,顾客在该商场购物可以获得双重优惠,例如:购买标价为400元的商品,则消费金额为320元,获得的优惠额为:
元,设购买商品得到的优惠率=(购买商品获得的优惠额)/(商品标价),试问:
(1)若购买一件标价为1000元的商品,顾客得到的优惠率是多少?
(2)对于标价在
(元)内的商品,顾客购买标价为多少元的商品,可得到不小于
的优惠率?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,以原点
为极点,
轴的非负半轴为极轴建立极坐标系.已知曲线
的极坐标方程为
,
为曲线
上的动点,
与
轴、
轴的正半轴分别交于
,
两点.
(1)求线段
中点
的轨迹的参数方程;
(2)若
是(1)中点
的轨迹上的动点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形
为正方形,四边形
为直角梯形,且
,
,平面
平面
,
.
![]()
(
)求证:
平面
.
(
)若二面角
为直二面角,
(i)求直线
与平面
所成角的大小.
(ii)棱
上是否存在点
,使得
平面
?若存在,求出
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在△
中,
,
分别为
,
的中点,
为
的中点,
,
.将△
沿
折起到△
的位置,使得平面
平面
,如图2.
(Ⅰ)求证:
;
(Ⅱ)求直线
和平面
所成角的正弦值;
(Ⅲ)线段
上是否存在点
,使得直线
和
所成角的余弦值为
?若存在,求出
的值;若不存在,说明理由.
![]()
图1 图2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形ABCD处规划一块长方形地面HPGC,建造住宅小区公园,但不能越过文物保护区三角形AEF的边线EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,问如何设计才能使公园占地面积最大,求出最大面积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com