精英家教网 > 高中数学 > 题目详情
(2013•东城区二模)用分层抽样方法从高中三个年级的相关人员中抽取若干人组成研究小组,有关数据见表:(单位:人)
年级 相关人数 抽取人数
高一 99 x
高二 27 y
高三 18 2
(1)求x,y;
(2)若从高二、高三年级抽取的人中选2人,求这二人都来自高二年级的概率.
分析:(1)根据分层抽样,抽取人数与相关人员数对应成比例的原则,结合已知中高中三个年级的相关人员数及从高三年级中抽取的人数,易求得x,y的值.
(2)设从高二年级抽取的3人为b1,b2,b3,从高三年级抽取的2人为c1,c2,从中随机选2人,我们用列举法列出所有不同的选取结果的个数,及满足条件选中的2人都来自高二的结果个数,即可得到答案.
解答:解:(Ⅰ)由题意可得  
x
99
=
y
27
=
2
18
,所以x=11,y=3.
(Ⅱ)记从高二年级抽取的3人为b1,b2,b3,从高三年级抽取的2人为c1,c2
则从这两个年级中抽取的5人中选2人的基本事件有:
(b1,b2),(b1,b3),(b1,c1),(b1,c2),
(b2,b3),(b2,c1),(b2,c2),
(b3,c1),(b3,c2),(c1,c2)共10种.
设选中的2人都来自高二的事件为A,
则A包含的基本事件有:(b1,b2),(b1,b3),(b2,b3)共3种.
因此P(A)=
3
10
=0.3

故选中的2人都来自高二的概率为0.3.
点评:本题考查的知识点是古典概型,及分层抽样,其中用列举法计算基本事件数及事件性质的概率是古典概型最常用的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•东城区二模)已知函数f(x)=lnx+
a
x
(a>0).
(1)求f(x)的单调区间;
(2)如果P(x0,y0)是曲线y=f(x)上的任意一点,若以P(x0,y0)为切点的切线的斜率k≤
1
2
恒成立,求实数a的最小值;
(3)讨论关于x的方程f(x)=
x3+2(bx+a)
2x
-
1
2
的实根情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)f(x)=
-
2
x
 ,   x<0
3+log2x ,  x>0
,则f(f(-1))等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)根据表格中的数据,可以断定函数f(x)=lnx-
3
x
的零点所在的区间是(  )
x 1 2 e 3 5
lnx 0 0.69 1 1.10 1.61
3
x
3 1.5 1.10 1 0.6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)对定义域的任意x,若有f(x)=-f(
1
x
)
的函数,我们称为满足“翻负”变换的函数,下列函数:
y=x-
1
x

②y=logax+1,
y=
x,0<x<1
0,x=1
-
1
x
,x>1

其中满足“翻负”变换的函数是
①③
①③
. (写出所有满足条件的函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,f(x)+xf′(x)<0(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),则a,b,c的大小关系是(  )

查看答案和解析>>

同步练习册答案