【题目】已知椭圆
的左、右焦点分别为
,过原点
且斜率为1的直线
交椭圆
于
两点,四边形
的周长与面积分别为8与
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)设直线
交椭圆
于
两点,且
,求证:
到直线
的距离为定值.
科目:高中数学 来源: 题型:
【题目】城镇化是国家现代化的重要指标,据有关资料显示,1978—2013年,我国城镇常住人口从1.7亿增加到7.3亿.假设每一年城镇常住人口的增加量都相等,记1978年后第t(限定
)年的城镇常住人口为
亿.写出
的解析式,并由此估算出我国2017年的城镇常住人口数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为
(
为参数),曲线C2的参数方程为
(
为参数).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α 与C1,C2 各有一个交点.当 α=0时,这两个交点间的距离为2,当 α=
时,这两个交点重合.
(1) 求曲线C1,C2的直角坐标方程
(2) 设当 α=
时,l与C1,C2的交点分别为A1,B1,当 α=-
时,l与C1,C2的交点分别为A2,B2,求四边形A1A2B2B1的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在本市某旧小区改造工程中,需要在地下铺设天燃气管道.已知小区某处三幢房屋分别位于扇形
的三个顶点上,点
是弧
的中点,现欲在线段
上找一处开挖工作坑
(不与点
,
重合),为铺设三条地下天燃气管线
,
,
,已知
米,
,记
,该三条地下天燃气管线的总长度为
米.
![]()
(1)将
表示成
的函数,并写出
的范围;
(2)请确定工作坑
的位置,使此处地下天燃气管线的总长度最小,并求出总长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,D是AC的中点,四边形BDEF是菱形,平面
平面ABC,
,
,
.
![]()
若点M是线段BF的中点,证明:
平面AMC;
求平面AEF与平面BCF所成的锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某县畜牧技术员张三和李四9年来一直对该县山羊养殖业的规模进行跟踪调查,张三提供了该县某山羊养殖场年养殖数量y(单位:万只)与相成年份x(序号)的数据表和散点图(如图所示),根据散点图,发现y与x有较强的线性相关关系,李四提供了该县山羊养殖场的个数z(单位:个)关于x的回归方程
.
![]()
(1)根据表中的数据和所给统计量,求y关于x的线性回归方程(参考统计量:
);
(2)试估计:①该县第一年养殖山羊多少万只?
②到第几年,该县山羊养殖的数量与第一年相比缩小了?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在中国决胜全面建成小康社会的关键之年,如何更好地保障和改善民生,如何切实增强政策“获得感”,成为
年全国两会的重要关切.某地区为改善民生调研了甲、乙、丙、丁、戊
个民生项目,得到如下信息:①若该地区引进甲项目,就必须引进与之配套的乙项目;②丁、戊两个项目与民生密切相关,这两个项目至少要引进一个;③乙、丙两个项目之间有冲突,两个项目只能引进一个;④丙、丁两个项目关联度较高,要么同时引进,要么都不引进;⑤若引进项目戊,甲、丁两个项目也必须引进.则该地区应引进的项目为( )
A. 甲、乙B. 丙、丁C. 乙、丁D. 甲、丙
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题
:关于
的不等式
无解;命题
:指数函数
是
上的增函数.
(1)若命题
为真命题,求实数
的取值范围;
(2)若满足
为假命题且
为真命题的实数
取值范围是集合
,集合
,且
,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com