【题目】如图,在四棱锥S-ABCD中,底面ABCD是菱形,
,
为等边三角形,G是线段SB上的一点,且SD//平面GAC.
![]()
(1)求证:G为SB的中点;
(2)若F为SC的中点,连接GA,GC,FA,FG,平面SAB⊥平面ABCD,
,求三棱锥F-AGC的体积.
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,E是棱AB的中点,动点F是侧面ACC1A1(包括边界)上一点,若EF//平面BCC1B1,则动点F的轨迹是( )
A.线段B.圆弧
C.椭圆的一部分D.抛物线的一部分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的焦点在
轴上.
(1)若椭圆
的焦距为1,求椭圆
的方程;
(2)设
分别是椭圆的左、右焦点,
为椭圆
上的第一象限内的点,直线
交
轴与点
,并且
,证明:当
变化时,点
在某定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,
为其焦点,
为其准线,过
任作一条直线交抛物线于
两点,
、
分别为
、
在
上的射影,
为
的中点,给出下列命题:
(1)
;(2)
;(3)
;
(4)
与
的交点的
轴上;(5)
与
交于原点.
其中真命题的序号为_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程为
(其中
为参数),以原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)若点
在直线
上,且
,求直线
的斜率;
(2)若
,求曲线
上的点到直线
的距离的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com