精英家教网 > 高中数学 > 题目详情

【题目】手机中的“运动”具有这样的功能,不仅可以看自己每天的运动步数,还可以看到朋友圈里好友的步数.小明的朋友圈里有大量好友参与了“运动”,他随机选取了其中30名,其中男女各15名,记录了他们某一天的走路步数,统计数据如下表所示:

0

2

4

7

2

1

3

7

3

1

(Ⅰ)以样本估计总体,视样本频率为概率,在小明朋友圈里的男性好友中任意选取3名,其中走路步数低于7500步的有名,求的分布列和数学期望;

(Ⅱ)如果某人一天的走路步数超过7500步,此人将被“运动”评定为“积极型”,否则为“消极型”.根据题意完成下面的列联表,并据此判断能否有以上的把握认为“评定类型”与“性别”有关?

积极型

消极型

总计

总计

附:.

0.10

0.05

0.025

0.01

2.706

3.841

5.024

6.635

【答案】(Ⅰ)见解析;(Ⅱ)见解析

【解析】试题分析:

(Ⅰ)由题意得在小明的男性好友中任意选取1名,其中走路步数低于7500的概率为

然后根据题意可得的所有可能取值分别为0,1,2,3,分别求出概率后可得的分布列,然后可求得期望.(Ⅱ)结合题意可完成列联表,由表中数据得到,故可得没有以上的把握认为“评定类型”与“性别”有关.

试题解析:

(Ⅰ)在小明的男性好友中任意选取1名,其中走路步数低于7500的概率为.

由题意得的所有可能取值分别为0,1,2,3,

故随机变量的分布列为

0

1

2

3

.

(Ⅱ)完成列联表

积极型

消极型

总计

9

6

15

4

11

15

总计

13

17

30

由表中数据可得 .

∴没有以上的把握认为“评定类型”与“性别”有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的曲线.当时,曲线是二次函数图象的一部分,当时,曲线是函数图象的一部分.根据专家研究,当注意力指数大于80时学习效果最佳.

(1)试求的函数关系式;

(2)教师在什么时段内安排核心内容,能使得学生学习效果最佳?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数fx),若fx)的图象上存在关于原点对称的点,则称fx)为定义域上的伪奇函数

1)若fx)=ln2x+1+m是定义在区间[11]上的伪奇函数,求实数m的取值范围;

2)试讨论fx)=4xm2x+2+4m23R上是否为伪奇函数?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱台中,点上,且,点内(含边界)的一个动点,且有平面平面,则动点的轨迹是( )

A. 平面B. 直线C. 线段,但只含1个端点D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线Ca0),过点P(-2,-4)的直线l的参数方程为t为参数),lC分别交于MN.

1)写出C的平面直角坐标系方程和l的普通方程;

2)若|PM||MN||PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E:的准线为,焦点为为坐标原点。

(1)求过点,且与相切的圆的方程;

(2)过点的直线交抛物线E于两点,点A关于x轴的对称点为,且点与点不重合,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为在椭圆上,椭圆的左顶点为,左、右焦点分别为的面积是的面积的倍.

(1)求椭圆的方程;

(2)直线)与椭圆交于,连接并延长交椭圆,连接,指出之间的关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验方式为:弧田面积=(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于米的弧田,按照上述经验公式计算所得弧田面积约是

A. 平方米 B. 平方米

C. 平方米 D. 平方米

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分形几何学是美籍法国数学家伯努瓦..曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,如图是按照一定的分形规律生产成一个数形图,则第13行的实心圆点的个数是______.

查看答案和解析>>

同步练习册答案