【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为
(
),M为该曲线上的任意一点.
![]()
(1)当
时,求M点的极坐标;
(2)将射线OM绕原点O逆时针旋转
与该曲线相交于点N,求
的最大值.
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的离心率为
,且过点A(2,1).
(1)求C的方程:
(2)点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司采购了一批零件,为了检测这批零件是否合格,从中随机抽测120个零件的长度(单位:分米),按数据分成
,
,
,
,
,
这6组,得到如图所示的频率分布直方图,其中长度大于或等于1.59分米的零件有20个,其长度分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,1.68,1.69,1.69,1.71,1.72,1.74,以这120个零件在各组的长度的频率估计整批零件在各组长度的概率.
![]()
(1)求这批零件的长度大于1.60分米的频率,并求频率分布直方图中
,
,
的值;
(2)若从这批零件中随机选取3个,记
为抽取的零件长度在
的个数,求
的分布列和数学期望;
(3)若变量
满足
且
,则称变量
满足近似于正态分布
的概率分布.如果这批零件的长度
(单位:分米)满足近似于正态分布
的概率分布,则认为这批零件是合格的将顺利被签收;否则,公司将拒绝签收.试问,该批零件能否被签收?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,
为铅垂线(
在AB上).经测量,左侧曲线AO上任一点D到MN的距离
(米)与D到
的距离a(米)之间满足关系式
;右侧曲线BO上任一点F到MN的距离
(米)与F到
的距离b(米)之间满足关系式
.已知点B到
的距离为40米.
![]()
(1)求桥AB的长度;
(2)计划在谷底两侧建造平行于
的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元)、桥墩CD每米造价
(万元)(k>0).问
为多少米时,桥墩CD与EF的总造价最低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左焦点
,点
在椭圆
上.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)经过圆
:
上一动点
作椭圆
的两条切线,切点分别记为
,
,直线
,
分别与圆
相交于异于点
的
,
两点.
(i)求证:
;
(ii)求
的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的参数方程为
(
为参数).以直角坐标系的原点
为极点,
轴的正半轴为极轴建立坐标系,曲线
的极坐标方程为
.
(1)求
的普通方程和
的直角坐标方程;
(2)若过点
的直线
与
交于
,
两点,与
交于
,
两点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线
的极坐标方程是
,以极点为原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
过点
,倾斜角为
.
(1)求曲线
的直角坐标方程与直线l的参数方程;
(2)设直线
与曲线
交于
,
两点,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com