精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)求曲线在点处的切线方程;(2)求函数上的最大值;

(3)求证:存在唯一的,使得.

【答案】(1);(2)6;(3)见解析

【解析】试题分析:根据导数的几何意义求切线斜率,写出切线方程;(Ⅱ)写出函数在区间上导数的变化情况,列表求最值即可;(Ⅲ)构造函数=,只需证明函数有唯一零点即可.

试题解析: ,

所以

所以曲线在点处的切线方程为:即:.

(Ⅱ),得.

在区间的情况如下:

-

0

+

极小值

因为 所以函数在区间上的最大值为6.

(Ⅲ)证明=

,得.

x的变化情况如下:

1

0

0

极大值

极小值

的增区间为,减区间为.

所以函数没有零点,又

所以函数上有唯一零点.

综上,在上存在唯一的使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)是定义在R上的可导函数,其导函数为f′(x),当x>0时有2f(x)+xf′(x)>x2 , 则不等式(x+2014)2f(x+2014)+4f(﹣2)<0的解集为(
A.(﹣∞,﹣2012)
B.(﹣2016,﹣2012)
C.(﹣∞,﹣2016)
D.(﹣2016,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若关于的不等式上恒成立,求的取值范围;

(2)设函数,若上有两个不同极值点,求的取值范围,并判断极值的正负.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是在竖直平面内的一个“通道游戏”.图中竖直线段和斜线段都表示通道,并且在交点处相遇,若竖直线段有第一条的为第一层,有二条的为第二层,…,依此类推.现有一颗小弹子从第一层的通道里向下运动.若在通道的分叉处,小弹子以相同的概率落入每个通道,记小弹子落入第n层第m个竖直通道(从左至右)的概率为P(n,m).某研究性学习小组经探究发现小弹子落入第n层的第m个通道的次数服从二项分布,请你解决下列问题.

(1)求P(2,1),P(3,2)及P(4,2)的值,并猜想P(n,m)的表达式.(不必证明)
(2)设小弹子落入第6层第m个竖直通道得到分数为ξ,其中ξ= ,试求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)若恒成立,试确定实数的取值范围;

(3)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设p:实数x满足x2﹣4ax+3a2<0,其中a<0,q:实数x满足x2﹣x﹣6≤0或x2+2x﹣8>0,且非p是非q的必要不充分条件,则实数a的范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某刻考试成绩与该科班平均分的差叫某科偏差,班主任为了了解个别学生的偏科情况,对学生数学偏差(单位:分)与物理偏差(单位:分)之间的关系进行偏差分析,决定从全班40位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如表:

(1)已知之间具有线性相关关系,求关于的线性回归方程;

(2)若这次考试该班数学平均分为120分,物理平均分为92,试预测数学成绩126分的同学的物理成绩.

参考公式:

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的函数
(1)如果函数 ,求b、c;
(2)设当x∈( ,3)时,函数y=f(x)﹣c(x+b)的图象上任一点P处的切线斜率为k,若k≤2,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线为

1)求实数的值;

2)是否存在实数,当时,函数的最小值为,若存在,求出的取值范围;若不存在,说明理由;

3)若,求证:

查看答案和解析>>

同步练习册答案