【题目】等比数列
中,
,公比
,用
表示它的前
项之积:
,则
中最大的是( )
A.
B.
C.
D. ![]()
【答案】C
【解析】分析:由题意可得an=512
,则|an|=512
,|an|=1,得n=10,∴|Πn|最大值在n=10之时取到,因为n>10时,|an|<1,n越大,会使|Πn|越小.所有n为偶数的an为负,故所有n为奇数的an为正,由此能求出最大的是Π9.
详解:∵在等比数列{an}中,a1=512,公比q=﹣
,∴an=512
,则|an|=512
.
令|an|=1,得n=10,∴|Πn|最大值在n=10之时取到,因为n>10时,|an|<1,n越大,会使|Πn|越小.
∴n为偶数时,an为负,n为奇数时,an为正.
∵Πn=a1a2…an,∴Πn 的最大值要么是a10,要么是a9.
∵Π10 中有奇数个小于零的项,即a2,a4,a6,a8,a10,则Π10<0,
而 Π9 中有偶数个项小于零,即a2,a4,a6,a8,故 Π9 最大,
故答案为:C
科目:高中数学 来源: 题型:
【题目】已知等差数列
和等比数列
满足
,
,
.
(1)求
的通项公式;
(2)求和:
.
【答案】(1)
;(2)
.
【解析】试题分析:(1)根据等差数列
的
,
,列出关于首项
、公差
的方程组,解方程组可得
与
的值,从而可得数列
的通项公式;(2)利用已知条件根据题意列出关于首项
,公比
的方程组,解得
、
的值,求出数列
的通项公式,然后利用等比数列求和公式求解即可.
试题解析:(1)设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)设等比数列的公比为q. 因为b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以
.
从而
.
【题型】解答题
【结束】
18
【题目】已知命题
:实数
满足
,其中
;命题
:方程
表示双曲线.
(1)若
,且
为真,求实数
的取值范围;
(2)若
是
的充分不必要条件,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“
”是“对任意的正数
,
”的( )
A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件
【答案】A
【解析】分析:根据基本不等式,我们可以判断出“
”?“对任意的正数x,2x+
≥1”与“对任意的正数x,2x+
≥1”?“a=
”真假,进而根据充要条件的定义,即可得到结论.
解答:解:当“a=
”时,由基本不等式可得:
“对任意的正数x,2x+
≥1”一定成立,
即“a=
”?“对任意的正数x,2x+
≥1”为真命题;
而“对任意的正数x,2x+
≥1的”时,可得“a≥
”
即“对任意的正数x,2x+
≥1”?“a=
”为假命题;
故“a=
”是“对任意的正数x,2x+
≥1的”充分不必要条件
故选A
【题型】单选题
【结束】
9
【题目】如图是一几何体的平面展开图,其中
为正方形,
,
分别为
,
的中点,在此几何体中,给出下面四个结论:①直线
与直线
异面;②直线
与直线
异面;③直线
平面
;④平面
平面
.
其中一定正确的选项是( )
![]()
A. ①③ B. ②③ C. ②③④ D. ①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列
和等比数列
满足
,
,
.
(1)求
的通项公式;
(2)求和:
.
【答案】(1)
;(2)
.
【解析】试题分析:(1)根据等差数列
的
,
,列出关于首项
、公差
的方程组,解方程组可得
与
的值,从而可得数列
的通项公式;(2)利用已知条件根据题意列出关于首项
,公比
的方程组,解得
、
的值,求出数列
的通项公式,然后利用等比数列求和公式求解即可.
试题解析:(1)设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)设等比数列的公比为q. 因为b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以
.
从而
.
【题型】解答题
【结束】
18
【题目】已知命题
:实数
满足
,其中
;命题
:方程
表示双曲线.
(1)若
,且
为真,求实数
的取值范围;
(2)若
是
的充分不必要条件,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是平行四边形,
,侧面
底面
,
,
,
,
分别为
,
的中点,点
在线段
上.
![]()
(1)求证:
平面
;
(2)若直线
与平面
所成的角和直线
与平面
所成的角相等,求
的值.
【答案】(1)证明见解析;(2)
.
【解析】试题分析:
(Ⅰ)在平行四边形
中,由条件可得
,进而可得
。由侧面
底面
,得
底面
,故得
,所以可证得
平面
.(Ⅱ)先证明平面
平面
,由面面平行的性质可得
平面
.(Ⅲ)建立空间直角坐标系,通过求出平面的法向量,根据线面角的向量公式可得
。
试题解析:
(Ⅰ)证明:在平行四边形
中,
∵
,
,
,
∴
,
∴
,
∵
,
分别为
,
的中点,
∴
,
∴
,
∵侧面
底面
,且
,
∴
底面
,
又
底面
,
∴
,
又
,
平面
,
平面
,
∴
平面
.
(Ⅱ)证明:∵
为
的中点,
为
的中点,
∴
,
又
平面
,
平面
,
∴
平面
,
同理
平面
,
又
,
平面
,
平面
,
∴平面
平面
,
又
平面
,
∴
平面
.
(Ⅲ)解:由
底面
,
,可得
,
,
两两垂直,
建立如图空间直角坐标系
,
![]()
则
,
,
,
,
,
,
所以
,
,
,
设
,则
,
∴
,
,
易得平面
的法向量
,
设平面
的法向量为
,则:
由
,得
,
令
,得
,
∵直线
与平面
所成的角和此直线与平面
所成的角相等,
∴
,即
,
∴
,
解得
或
(舍去),
故
.
点睛:用向量法确定空间中点的位置的方法
根据题意建立适当的空间直角坐标系,由条件确定有关点的坐标,运用共线向量用参数(参数的范围要事先确定)确定出未知点的坐标,根据向量的运算得到平面的法向量或直线的方向向量,根据所给的线面角(或二面角)的大小进行运算,进而求得参数的值,通过与事先确定的参数的范围进行比较,来判断参数的值是否符合题意,进而得出点是否存在的结论。
【题型】解答题
【结束】
21
【题目】如图,椭圆
上的点到左焦点的距离最大值是
,已知点
在椭圆上,其中
为椭圆的离心率.
![]()
(1)求椭圆的方程;
(2)过原点且斜率为
的直线交椭圆于
、
两点,其中
在第一象限,它在
轴上的射影为点
,直线
交椭圆于另一点
.证明:对任意的
,点
恒在以线段
为直径的圆内.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高三年级实验班与普通班共1000名学生,其中实验班学生200人,普通班学生800人,现将高三一模考试数学成绩制成如图所示频数分布直方图,按成绩依次分为5组,其中第一组([0, 30)),第二组([30, 60)),第三组([60, 90)),的频数成等比数列,第一组与第五组([120, 150))的频数相等,第二组与第四组([90, 120))的频数相等。
![]()
(1)求第三组的频率;
(2)已知实验班学生成绩
在第五组,
在第四组,剩下的都在第三组,试估计实验班学生数学成绩的平均分;
(3)在(2)的条件下,按分层抽样的方法从第5组中抽取5人进行经验交流,再从这5人中随机抽取3人在全校师生大会上作经验报告,求抽取的3人中恰有一个普通班学生的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程
.
(
)若已知方程表示椭圆,则
的取值范围为__________.
(
)语句“
”是语句“方程
”表示双曲线的(_____________).
A.充分不必要条件 B.必要不充分条件 C.充在条件 D.既不充分也不必要条件
(
)根据(
)的结论,以“如果
那么
”的形式写出一个正确命题,记作命题
,则
命题
:__________.
(
)套用量词命题的格式:“
,
”或“
,
”,改写(
)中命题
,
表述形式为:__________.
(
)写出(
)中命题
的逆命题,记作命题
,则
命题
:__________.
(
)判断(
)中命题
的真假,并陈述判断理由.
命题为__________命题,因为__________.
(
)若已知方程表示椭圆,则该椭圆两个焦点的坐标分别为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com