【题目】已知
,动点
满足
,且
,则
在
方向上的投影的取值范围是__________.
【答案】
.
【解析】分析:方法一,根据已知条件计算
和
,结合数量积公式得到
在
方向上的投影为
(也可以建立直角坐标系,通过向量的坐标运算求解
),然后对
分类讨论,运用换元法计算即可解答题目.
方法二,几何法,根据已知条件,得
为等边三角形,再将.
,转换成
,且
,确定点M的位置,结合图形和数量积的几何意义解答问题.
详解:方法一,
,
,
,![]()
![]()
![]()
![]()
在
方向上的投影![]()
设
,
(1)当
时,![]()
(2)当
,则![]()
![]()
①当
时,
,
,当
时取得最大值.
②当
时,
,
,
时![]()
综上
在
方向上的投影的取值范围为![]()
故答案为![]()
方法二,
,![]()
,
,
为等边三角形.
设
,易得
为直角三角形.
,且
,
,且![]()
点
在直线BD上.
如图所示,点
在直线BD上由左至右移动过程中,
在
方向上的投影先增大在减小
当
时,
在
方向上的投影取得最大值2;
当
在右侧无穷远处,近似于
,
在
方向上的投影最小值接近于![]()
所以
在
方向上的投影的取值范围为![]()
故答案为![]()
![]()
科目:高中数学 来源: 题型:
【题目】对于区间
,若函数
同时满足:①
在
上是单调函数;②函数
,
的值域是
,则称区间
为函数
的“保值”区间.
(1)求函数
的所有“保值”区间.
(2)函数
是否存在“保值”区间?若存在,求出
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是平行四边形,
,侧面
底面
,
,
,
分别为
的中点,点
在线段
上.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)如果直线
与平面
所成的角和直线
与平面
所成的角相等,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.![]()
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1﹣BC1﹣B1的余弦值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(改编)已知正数数列
的前
项和为
,且满足
;在数列
中,![]()
(1)求数列
和
的通项公式;
(2)设
,数列
的前
项和为
. 若对任意
,存在实数
,使
恒成立,求
的最小值;
(3)记数列
的前
项和为
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,直线![]()
(1)若直线
与圆
相交于两点
,弦长
等于
,求
的值;
(2)已知点
,点
为圆心,若在直线
上存在定点
(异于点
),满足:对于圆
上任一点
,都有
为一常数,试求所有满足条件的点
的坐标及改常数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com